Thiết kế các bài thí nghiệm cho phòng thí nghiệm vật lý hạt nhân trường đại học sư phạm thành phố Hồ Chí Minh - pdf 14

Download miễn phí Luận văn Thiết kế các bài thí nghiệm cho phòng thí nghiệm vật lý hạt nhân trường đại học sư phạm thành phố Hồ Chí Minh



Bức xạ gamma là bức xạ điện từ, có khả năng xuyên sâu rất lớn. Bức xạ gamma phát ra năng
lượng xác định và năng lượng rất lớn có thể tới 8-10 MeV.
Khi đi qua vật chất bức xạ gamma bị mất năng lượng do các quá trình: quang điện, Compton
và sự tạo cặp. Bức xạ gamma là bức xạ mạnh và có khả năng xuyên sâu lớn nên có thể gây nguy
hiểm đáng kể ở những khoảng cách khá xa nguồn.
Các tia tán xạ gamma cũng gây nguy hiểm do đó phải che chắn theo mọi hướng, vì nó gây tổn
thương lên các mô lành của cơ thể dẫn đến tổn hại đến cơ thể.



Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.

Tóm tắt nội dung:

hành đo alpha cần lưu ý: hạt alpha có khả năng đâm xuyên khá thấp trong số các bức
xạ ion hóa. Do đó khi đo các nguồn alpha người ta thiết kế khay đặt nguồn sát đầu dò.
2.1.2.4. Khảo sát sự phân bố số đếm theo hàm phân bố Possion
Trong thí nghiệm hạt nhân thì mẫu nghiên cứu chứa rất nhiều hạt nhân phóng xạ nhưng hệ đo
chỉ ghi nhận được một phần nhỏ các hạt phóng xạ. Với điều kiện
p << 1 và n lớn. Trong đó p là xác suất xảy ra tức là xác suất để hạt nhân phóng xạ phát ra từ nguồn
và được ghi nhận bằng detector còn n là số hạt nhân phóng xạ phát ra từ nguồn.
Trong đo lường phóng xạ, sự phân rã hạt nhân tuân theo quy luật thống kê Poisson.
n nn .e
P(n)
n!

 (2.9)
Số đếm trung bình trong k lần đo
k
i
i 1
n
n
k


(2.10)
Và xác suất xảy ra số đếm ni trong một lần đo với thời gian t tuân theo quy luật phân bố
Poisson, đường biểu diễn phân bố Poisson không đối xứng.
in n
i
i
n .e
P(n )
n !

 (2.11)
Các bước tiến hành
Bước 1: Mở hệ đo lên và sấy máy khoảng 30 phút.
Bước 2: Đặt nguồn chuẩn 238 234 234 234U, U, Th, Pa vào khay để đo với thời gian mỗi lần đo là 2
giây.
Bước 3: Chọn chế độ chỉ đo số đếm beta và thời gian đo.
Bước 4: Sau đó xử lý số liệu và vẽ đồ thị phân bố Possion.
2.1.2.5. Khảo sát số đếm theo phân bố Gauss
Khi tốc độ đếm tăng, xác suất để có tốc độ đếm ni trong 1 lần đo tuân theo phân bố Gauss.
 2in n
2n
i
1
P(n ) e
2 n




(2.12)
Các bước tiến hành
Bước 1: Tiến hành giống như khảo sát số đếm theo phân bố Possion.
Bước 2: Thời gian cho mỗi phép đo là 30 giây và đo 200 lần.
Bước 3: Sau đó xử lý số liệu và tiến hành vẽ đồ thị phân bố Gauss.
2.1.2.6. Tối ưu hóa thời gian đo
Là xác định tỷ lệ thời gian đếm nguồn và phông tối ưu nhằm cực tiểu hóa độ lệnh chuẩn.
Xác định thời gian đo tối ưu áp dụng theo nguyên lý truyền sai số.
Gọi S là tốc độ đếm thật từ một nguồn phóng xạ và B là tốc độ đếm phông.
Phép đo tốc độ đếm thật thường được thực hiện bằng cách đo số đếm tổng của nguồn kèm
phông trong khoảng thời gian TS+B, sau đó đo riêng phông trong khoảng thời gian TB. Tốc độ đếm
thật của riêng nguồn được xác định như sau:
1 2
S B B
N N
S
T T
  (2.13)
Trong đó N1 là số đếm tổng nguồn và phông, N2 là số đếm phông
Theo định luật truyền sai số ta có:
1 2
2 2
N N
S
S B BT T
    
     
   
(2.14)
1 2
S 2 2
S B B
N N
T T
   (2.15)
S
S B B
S B B
T T

   (2.16)
Để xác định điều kiện cực tiểu của S , bình phương và lấy vi phân phương trình (2.16), ta
được:
S S S B B2 2
S B B
S B B
2 d dT dT
T T



     (2.17)
Với một khoảng thời gian không đổi, T = TS+B+TB = const, thì dTS+B+dTB = 0.
Đặt Sd 0  , ta thu được điều kiện tối ưu cho tỉ lệ thời gian đo như sau:
S B
B
T S B
T B
  (2.18)
Đặt S
S

  là độ lệch chuẩn tỷ đối của tốc độ đếm thực từ nguồn. Chuyển TS+B và TB về thời
gian tổng T, ta được hệ thức giữa T và 
2
2
2
1 S
T ( S B B)
 
 
(2.19)
Công thức (2.19) xác định thời gian cần thiết với một độ chính xác định trước ( )
Các bước tiến hành
Bước 1: Đặt chế độ làm việc: để nút chỉnh cao thế ở cực tiểu, bật cao thế, cho hệ đo ổn định
trong 30 phút.
Bước 2: Sau đó xác định cao thế làm việc của máy.
 Xác định độ lệch chuẩn tương đối
Tiến hành 10 phép đo phông trong điều kiện như nhau trong khoảng thời gian TB=30 s cho 1
phép đo và được dãy số đếm phông. Tính số đếm phông trung bình.
Tiến hành 10 phép đo với nguồn phóng xạ cùng điều kiện hình học giống như đo phông trong
khoảng thời gian 30s cho 1 phép đo để có dãy số đếm Ni. Tính số đếm trung bình.
Tính tốc độ đếm thật trung bình S của nguồn và độ lệch chuẩn S suy ra độ lệch chuẩn tỷ đối
1 tương ứng.
 Xác định tỷ lệ thời gian
Dùng công thức (2.19) xác định tỷ số S B
B
T
T
 tối ưu, suy ra TS+B và TB sao cho TS+B+TB= 60
giây.
Thực hiện lại các phép đo với thời gian đã tối ưu
Tính tốc độ đếm trung bình S của nguồn và độ lệch chuẩn S suy ra độ lệch chuẩn tỷ đối 2
tương ứng.
So sánh 2 giảm mấy lần so với 1 .
2.2. Hệ đo gamma đơn kênh
2.2.1. Giới thiệu máy Ludlum Model 2200 Scaler Ratemeter
Máy đơn kênh Ludulum Model 2200 là thiết bị được dùng cho việc phân tích phổ năng lượng
gamma cùng với detector nhấp nháy, ống đếm Geiger-Muller và Ống đếm tỷ lệ. Số đếm được hiển
thị trên đèn LED và máy có thể kết nối với máy vi tính thông qua cổng RS-232 và có phần mềm xử
lý kết quả đo.
2.2.1.1. Mặt trước của máy
Hình 2.3: Mặt trước của máy
Bao gồm:
Đèn đếm (count Lamp): số đếm hiện thị bằng đèn LED (có màu đỏ) gồm có 6 số.
Công tắc đếm (count Switch): để xóa và khởi động đếm, quá trình đếm sẽ tự động tắc khi kết
thúc thời gian đã đặt trước.
Thời gian đếm (count Time): thời gian sử dụng để đo với đơn vị là phút từ 0-999 với công tắc
chỉnh X0.1 và X1.
Số phút (MINUTES): cài đặt thời gian có thể điều chỉnh bằng tay có núm 3 số thập phân dùng
để đặt trước thời gian đếm.
Công tắc chọn chức năng (Ratemeter Function Selector): có 3 vị trí được cài đặt sẵn RATE,
HV, BAT. Chức năng của công tắc này (RATE) là cho phép điều khiển tốc độ đếm của đồng hồ,
HV cài đặt điện thế và BAT kiểm tra tình trạng làm việc của pin trên đồng hồ.
Ngưỡng (THRESHOLD): Là một nút được chia ra làm 10 vạch nhỏ với 10 vòng dùng đề lựa
chọn xung phù hợp với thang đo. Thiết bị điều khiển này thì có giá trị tăng từ thế từ 1.00 đến 10.00.
Nếu dưới 1.00 thì sẽ bị ảnh hưởng của tiếng ồn hay nhiễu do đó sẽ không ghi nhận được xung một
cách chính xác.
Cửa sổ (WINDOW): là một nút gồm có 10 vạch giống như Threshold được sử dụng để điều
chỉnh độ rộng cửa sổ. Nó được điều chỉnh ngưỡng sao cho một vòng quay của việc điều chỉnh cửa
sổ tương đương với một vòng quay điều chỉnh ngưỡng.
Tắt mở (ON-OFF): là công tắc bằng nút, mở hay đóng cửa sổ.
Đầu nối vào detector (Detector input connection): đầu nối đồng trục nối tiếp “C”. Nó là đầu
điều chỉnh không có chỉ số chỉ thị, cho phép chọn điểm làm việc mà không vượt ra khỏi mạch tuyến
tính của mạch Threshold/ Window.
Công tắc nguồn ( Power Switch) :công tắc có 3 vị trí:
OFF: tắt nguồn.
LINE: cung cấp điện cho nguồn từ 85- 265 V và tần số từ 50-60 Hz.
BAT: cáp nguồn từ 4 pn loại “D”.
DISCR: có 1 với đồng hồ điện thế để thiết lập phạm vi ngưỡng cho điện thế.
Công tắc chọn khoảng (RANGE Selector Switch): có 4 vị trí công tắc sắp xếp theo hệ số nhân
của 10 là X1, X10, X100, X1K ứng với thang đo của số đếm từ 0-500 counts-per-minute(cpm), 0-
5000, 0-50000, 0-500,000 cpm.
Công tắc ZERO (ZERO Switch): khi ấn vào nút công tắc thì tụ điện tích hợp phóng điện để
đưa đồng hồ đo về mức 0.
Nút Fast- Slow (F-S Response): công tắc với 2 vị trí chỉ thị để điều chỉnh ở mức độ nhanh ở
vị trí “F” đồng hồ sẽ chỉ từ 0 đế...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status