Nghiên cứu ứng dụng biến tần đa mức trong truyền động điện - pdf 14

Download miễn phí Luận văn Nghiên cứu ứng dụng biến tần đa mức trong truyền động điện



Bộ nghịch lưu áp đa mức ngày càng được sử dụng nhiều trong các ứng dụng có điện
áp cao và hiệu suất cao. Ưu điểm chính của nó: công suất của bộ nghịch lưu áp tăng lên,
điện áp đặt lên các linh kiện giảm xuống nên công suất tổn hao do quá trình đóng cắt của
linh kiện cũng giảm theo, với cùng tần số đóng cắt các thành phần sóng hài bậc cao của
điện áp ra nhỏ hơn so với trường hợp bộ nghịch lưu 2 mức.
Trong các cấu trúc của bộ nghịch lưu đa mức, cấu trúc dạng flying capacitor (FLC)
khó thực hiện bởi vì mỗi tụ điện được nạp với điện áp khác nhau khi số mức điện áp tăng
lên. Bộ nghịch lưu cầu H nối tầng (CHB) có khả năng mođun hóa, vấn đề không cân bằng
của điện áp liên lạc một chiều không xảy ra, do đó dễ mở rộng ở nhiều mức, tuy nhiên cần
phân tách nguồn một chiều. Cấu trúc có điôt kẹp (NPC) khó mở rộng sang nhiều mức bởi
vì vấn đề liên lạc một chiều không cân bằng, số điôt chốt tăng lên. Vì vậy trong phạm vi
luận văn tác giả chỉ tập trung nghiên cứu cho bộ nghịch lưu áp 3 mức (3L-NPC).



Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung:

tâm Học liệu – Đại học Thái Nguyên
25
Hình 2.2: Trạng thái, điện áp điều khiển các chuyển mạch và điện áp ra
Tương tự ta cũng có điện áp pha UBZ, UCZ có dạng giống UAZ nhưng có sự dịch
chuyển pha đi 2/3. Điện áp dây
BZAZAB UUU 
sẽ có 5 mức điện áp: 2E, E, 0, -E và -
2E (hình 2.3).
Hình 2.3: Điện áp pha và điện áp dây của bộ nghịch lưu 3L-NPC
2.4.1.3. Quá trình chuyển mạch
Để nghiên cứu sự chuyển mạch của các khóa trong bộ nghịch lưu 3L-NPC, coi như
có sự chuyển đổi trạng thái từ trạng thái O sang trạng thái P bằng cách ngắt S3 và đóng S1
với thời gian chết bỏ qua. Với giả thiết rằng dòng điện pha iA không đổi chiều trong quá
trình chuyển mạch do tải có tính cảm, giá trị hai tụ điện Cd1 và Cd2 đủ lớn để điện áp đặt
lên mỗi tụ điện giữ giá trị bằng E và các khóa chuyển mạch coi như lý tưởng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
26
- Trường hợp 1: dòng điện tải iA > 0 (hình 1.4a)
Bộ nghịch lưu đang ở trạng thái O tương ứng với các khóa chuyển mạch S1, S4 đều
ngắt, còn S2 và S3 đang đóng. Điôt chốt DZ1 đang dẫn dòng điện iA > 0. Điện áp đặt trên
hai khóa chuyển mạch S2, S3:
0UU S3S2 
, còn điện áp đặt lên hai khóa S1,
S4:
EUU S4S1 
. Sau khi S3 ngắt hoàn toàn, S1 đóng lại (trạng thái P) tương ứng với điện
áp rơi
0US1
, điôt chốt DZ1 bị phân cực ngược nên khóa lại, dòng điện chuyển từ DZ1 sang
S1. Do cả hai khóa chuyển mạch S3 và S4 đều đã ngắt nên điện áp rơi trên chúng:
EUU S4S3 
.
- Trường hợp 2: dòng điện tải iA < 0 (hình 2.4b)
Hình 2.4a: Quá trình chuyển mạch từ trạng thái O sang
trạng thái P với dòng điện tải iA > 0
Trạng thái O Trạng thái P
Hình 2.4b: Quá trình chuyển mạch từ trạng thái O sang
trạng thái P với dòng điện tải iA < 0
Trạng thái O Trạng thái P
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
27
Bộ nghịch lưu đang ở trạng thái O, S2 và S3 đang đóng, điôt chốt DZ2 đang dẫn dòng điện
chạy qua (iA < 0). Điện áp đặt trên hai khóa chuyển mạch S1, S4:
S1 S4U = U = E
. Do tải có
tính cảm nên dòng điện không đổi chiều ngay lập tức mà làm điôt D1 và D2 mở, dẫn đến
S1 S2U U 0 
. Lúc này dòng điện tải iA chuyển mạch từ S3 qua D1, D2 (trạng thái P).
Tương tự ta có thể khảo sát quá trình chuyển mạch từ trạng thái P sang trạng thái O,
từ trạng thái O sang trạng thái N hay ngược lại dưới dạng bảng 2.2.
Bảng 2.2: Quá trình dẫn dòng của các khóa trong pha A
của bộ nghịch lưu 3L-NPC
Trạng thái S1 D1 S2 D2 S3 D3 S4 D4 DZ1 DZ2
Dòng điện tải iA > 0
P x x
O x x
N x x
Dòng điện tải iA < 0
P x x
O x x
N x x
2.4.2. Bộ nghịch lưu dạng flying capacitor
2.4.2.1. Cấu trúc
Cấu trúc bộ nghịch lưu dạng flying capacitor tương tự như bộ nghịch lưu điôt kẹp chỉ
khác không có điôt kẹp mà thay bằng tụ điện. Ở đây ta khảo sát cấu trúc bộ nghịch lưu
dạng flying capacitor 3 mức (3L-FLC inverter) gồm có 12 khóa chuyển mạch, điôt ngược
mắc song song và 3 tụ điện thay đổi (hình 2.5). Trong quá trình hoạt động tụ điện thay đổi
được nạp đến 1/2 điện áp cung cấp từ nguồn một chiều.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
28
E
+
_
Z
O
+
_
1S 1D
2S 2D
3D
4S 4D
d1C
1C
E
+
_
d2C
dcU A B C
3S
Hình 2.5: Bộ nghịch lưu dạng flying capacitor 3 mức
2.4.2.2. Trạng thái của các khóa chuyển mạch
Để tạo ra 3 mức điện áp, các khóa chuyển mạch được điều khiển sao cho tại mọi
thời điểm chỉ có hai trong bốn khóa ở mỗi pha được đóng. Trạng thái của các chuyển
mạch trong bộ nghịch lưu 3L-FLC được cho dưới dạng bảng 2.3. Nó chỉ khác so với bộ
nghịch lưu 3L-NPC là có hai trạng thái O tương ứng với S1 đóng, S2 ngắt và S1 ngắt, S2
đóng. Tùy theo chiều dòng điện qua tụ thay đổi mà nạp hay xả tụ điện.
Bảng 2.3: Bảng trạng thái chuyển mạch (pha A) của 3L-FLC
Trạng thái
Trạng thái các khóa chuyển mạch
UAZ ic1
S1 S2 S3 S4
P Đóng Đóng Ngắt Ngắt E 0
O
Đóng Ngắt Đóng Ngắt 0 iA
Ngắt Đóng Ngắt Đóng 0 -iA
N Ngắt Ngắt Đóng Đóng -E 0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
29
2.4.2.3. Quá trình chuyển mạch
Để nghiên cứu sự chuyển mạch của các khóa chuyển mạch trong bộ nghịch lưu 3L-
FLC, coi như có sự chuyển đổi từ trạng thái O sang trạng thái P bằng cách ngắt S3 và đóng
S2 với thời gian chết bỏ qua.
- Trường hợp 1: dòng điện tải iA > 0 (hình 2.6a)
Bộ nghịch lưu ở trạng thái O tương ứng với các khóa S1, S3 đang đóng và S2, S4 đang
ngắt. Điôt D3 đang dẫn cho dòng điện iA > 0 chạy qua. Sau khi S3 ngắt hoàn toàn, S2 đóng
lại (trạng thái P) dòng điện chuyển từ D3 qua S2.
- Trường hợp 2: dòng điện tải iA < 0 (hình 2.6b)
E
+
_
Z
+
_
1S 1D
2S 2D
3D
4S 4D
d1C
1C
E
+
_
d2C
dcU A
3S
Ci
Ai E
+
_
Z
+
_
1S 1D
2S 2D
3D
4S 4D
d1C
1C
E
+
_
d2C
dcU A
3S A
i
Trạng thái O Trạng thái P
Hình 2.6a: Quá trình chuyển mạch từ trạng thái O
sang trạng thái P với dòng điện tải iA > 0
E
+
_
Z
+
_
1S 1D
2S 2D
3
4 4
d1C
1C
E
+
_
d2C
dcU A
3S
Ci
Ai E
+
_
Z
+
_
1S 1D
2S 2D
3
4S 4
d1C
1C
E
+
_
d2C
dcU A
3S A
i
Trạng thái O Trạng thái P
Hình 2.6 b: Quá trình chuyển mạch từ trạng thái O
sang trạng thái P với dòng điện tải iA < 0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
30
Bộ nghịch lưu ở trạng thái O tương ứng với các khóa S1, S3 đang đóng và S2, S4 đang
ngắt. Điôt D1 đang dẫn dòng iA < 0 chạy qua. Sau khi S3 ngắt hoàn toàn, S2 đóng lại (trạng
thái P), dòng điện chuyển qua D1 và D2.
Tương tự ta có thể khảo sát quá trình chuyển mạch từ trạng thái P sang trạng thái O,
từ trạng thái O sang trạng thái N hay ngược lại dưới dạng bảng 2.4.
Bảng 2.4: Quá trình dẫn dòng của các khóa trong pha A
của bộ nghịch lưu 3L-FLC
Trạng thái S1 D1 S2 D2 S3 D3 S4 D4
Dòng điện tải iA > 0
P x x
O
x x
x x
N x x
Dòng điện tải iA < 0
P x x
O
x x
x x
N x x
2.4.3. Bộ nghịch lưu nhiều mức kiểu cầu H nối tầng (cascade H-bridge multilevel
inverter)
2.4.3.1. Cấu trúc
Bộ nghịch lưu nhiều mức kiểu cầu H nối tầng (CHB) bao gồm nhiều cầu H một pha
mắc nối tiếp để tạo ra điện áp xoay chiều. Nó sử dụng nhiều nguồn một chiều cách ly để
cung cấp cho cầu H một pha. Ở đây ta nghiên cứu cấu trúc một bộ nghịch lưu kiểu cầu H
nối tầng có 5 mức (5L-CHB) gồm có 2 cầu H mắc nối tiếp trong mỗi pha (hình 2.7). Điện
áp một chiều cung cấp cho bộ cầu H một pha thường từ bộ chỉnh lưu điôt nhiều mức. Để
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
31
tạo ra điện áp có 5 mức thì tại mội thời điểm các khóa chuyển mạch được điều khiển sao
cho chỉ có 2 trong 4 khóa của mỗi cầu H được đóng.
E
11S 11D
41D41S
3S 31D
21D2S
E
12S 12D
42D42S
3S 32D
22D2S
1H
2H
h1U
h2U
E
E
E
E
A B C
O
N
Hình 2.7: Bộ nghịch lưu 5 mức kiểu cầu H nối tầng
2.4.3.2. Trạng thái của các khóa chuyển mạch
Khi các khóa chuyển mạch S11, S21, S12 và S22 dẫn dòng thì điện áp ra của cầu H1 và
H2 lần lượt:
EUU h2h1 
nên điện áp ra tổng hợp trên pha A của bộ nghịch lưu:
2EUUU h2h1AN 
. Tương tự với S31, S41, S32 và S42 dẫn thì điện áp ra
2EUAN 
. Còn 3
mức điện áp còn lại ...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status