Đặc trưng môđun tựa nội xạ bởi tính chất (1-C1 ) - pdf 16

Download miễn phí Luận văn Đặc trưng môđun tựa nội xạ bởi tính chất (1-C1 )



MỤC LỤC
Trang
Mục lục 1
Danh mục các kýhiệu và chữ cái viết tắc 2
Mở đầu 3
Chương 1: Kiến thức cơ bản
1.1.Định nghĩa và ví dụ 5
1.2.Một số tính chất của môđun nội xạ 10
Chương 2: Đặc trưng của môđun tựa nội xạ bởi tính chất (1-C1)
2.1.Một số tính chất của môđun tựa nội xạ 15
2.2.Một số tính chất của lớp CS-môđun và (1-C1)-môđun 18
2.3.Đặc trưng của môđun tựa nội xạ bởi tính chất (1-C1) 26
Kết luận 29
Tài liệu tham khảo 31



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

ột môđun con tối đại trong M
sao cho N e⊆ K.
Hệ quả. Bao đóng của môđun luôn tồn tại.
Chứng minh. Thật vậy cho H⊆M. Ta chứng minh luôn tồn tại bao đóng của
H trong M. Đặt S={K⊆M/H e⊆ K}
- S khác rỗng vì H∈S
5
- Sắp thứ tự của S theo quan hệ ⊆ . Lấy tập con của S, sắp thứ tự tuyến
tính là K1⊆K2 ⊆…⊆Kn⊆… (1)
Đặt A=

1
Ki, ta thấy A là cận trên của (1). Ta chứng minh A∈S hay H
e⊆ A.
Lấy x∈A và x≠ 0 suy ra tồn tại n để x∈Kn, mà H e⊆ Kn suy ra Rx∩H≠
0 suy ra H e⊆ A suy ra A∈S.
Vậy mỗi tập sắp thứ tự tuyến tính đều có cận trên. Theo Bổ đề Zorn suy
ra S có phần tử tối đại là K.
Ta chứng minh K là bao đóng của H. Do K∈S suy ra H e⊆ K, nếu tồn tại
B⊆M sao cho K e⊆ B suy ra H e⊆ B suy ra B∈S điều này mâu thuẩn với giả
thiết tính tối đại của K suy ra B=K.
Ví dụ. Xét Z- môđun, 2Z có bao đóng là Z
1.1.5.Định nghĩa. Cho môđun M và N,H⊆M. Môđun H được gọi là một
phần bù giao của N trong M nếu H là môđun tối đại trong các môđun con của
M thỏa mãn H∩N=0.
1.1.6.Định nghĩa
(1) Một môđun M khác không được gọi là môđun đơn trong trường hợp
nó không có những môđun con không tầm thường.
(2) Cho họ (Mi)i ∈I là một tập hợp những môđun con đơn của M. Nếu M
là tổng trực tiếp của tập hợp này, thì M=⊕
∈Ii
Mi là một sự phân tích nửa đơn
của M. Một môđun M được gọi là môđun nửa đơn trong trường hợp nó có
một sự phân tích nửa đơn.
1.1.7.Định nghĩa
(1) Một môđun M được gọi là không thể phân tích được trong trường
hợp nó khác không và không có những hạng tử trực tiếp không tầm thường.
6
(2) Một hạng tử trực tiếp K của M được gọi là một hạng tử trực tiếp tối
đại của M nếu và chỉ nếu K có một bù hạng tử trực tiếp không phân tích được
N trong M.
(3) Một sự phân tích M=⊕
∈Ii
Mi của một môđun M như một tổng trực tiếp
của những môđun con khác không (Mi)i∈I được gọi là bù hạng tử trực tiếp
(bù hạng tử trực tiếp tối đại) trong trường hợp cho mọi hạng tử trực tiếp K
của M có tập hợp con J của I với M = KM jJj ⊕ ⊕∈
1.1.8.Định nghĩa. Cho hai môđun I và J.
(1) Môđun I được gọi là J-nội xạ (J-injective) nếu với mỗi đơn cấu
môđun g:K
→ J và với mỗi đồng cấu môđun f: K → I thì có một đồng
cấu môđun f *:J
→ I (f * là một mở rộng của f theo đơn cấu g) sao cho
f *.g = f
(2) Môđun I được gọi là tựa nội xạ (quasi-injective) nếu I là I- nội xạ
Ví dụ: i) Z–môđun q là Z nội xạ
ii) Z–môđun Z không phải là Z nội xạ
1.1.9. Định nghĩa. Cho hai môđun P và J.
(1)Môđun P được gọi là J-xạ ảnh (J- projective) nếu với mỗi toàn cấu
g:J →K và với mỗi đồng cấu h:P → K thì có một đồng cấu h*:P → J
sau cho g.h*= h
7
I
K J
f
g
f*
(2) Môđun P được gọi là tựa xạ ảnh (quasi-projective) nếu P là P-xạ ảnh
1.1.10. Định nghĩa. Cho môđun M. Ta thường xét các điều kiện sau:
(C1) Mọi môđun con của M là cốt yếu trong hạng tử trực tiếp của M. Nói
cách khác, mọi môđun con đóng trong M là một hạng tử trực tiếp của M.
(C2) Nếu A và B là các môđun con của M đẳng cấu với nhau và A là một
hạng tử trực tiếp của M thì B cũng là hạng tử trực tiếp của M.
(C3) Nếu những môđun con của A và B là các hạng tử trực tiếp của M và
A∩B=0 thì A⊕B cũng là hạng tử trực tiếp của M.
(1-C1) Mọi môđun con đều của M là cốt yếu trong một hạng tử trực tiếp
của M.
(1) Một môđun M được gọi là CS-môđun (hay Extending) nếu M thỏa
mãn điều kiện (C1).
(2) Một môđun M được gọi là (1-C1)-môđun nếu M thỏa mãn điều kiện
(1-C1).
(3) Một môđun M được gọi là liên tục (hay continuous) nếu M thỏa mãn
các điều kiện (C1) và (C2).
(4) Một môđun M được gọi là tựa liên tục (hay quasi-continuous) nếu M
thỏa mãn các điều kiện (C1) và (C3).
8
P
KJ
h
g
h*
1.1.11.Định nghĩa. Cho họ các môđun (Ai/i∈I). Khi đó tích đềcác
{ }Ii,iAia/)ia(Ii iA ∈∈=∏∈ cùng với các phép toán cộng và phép nhân vô
hướng theo thành phần
(ai)+ (bi)=(ai+bi);
(ai)r =(air),
là một môđun. Môđun này được gọi là tích trực tiếp của họ (Ai/i∈I).
Trường hợp Ai = A, Ii∈∀ , ta ký hiệu
IA
Ii i
A =∏

.
Phép chiếu Pj : ∏∈Ii i
A
→ Aj là một R-đồng cấu môđun, Ij∈∀
(ai) aj
1.1.12.Định nghĩa. Môđun A được gọi là tổng trực tiếp trong của một họ các
môđun con (Ai/i∈I) nếu các điều kiện sau được thỏa mãn:
(1) A = ∑
∈Ii i
A ,
(2) Ij;0ji i
AjA ∈∀=∑≠

1.1.13.Định nghĩa. Một họ {Ai/i∈I} các môđun con của M được gọi là hạng
tử trực tiếp địa phương của M nếu ∑
∈Ii i
A là tổng trực tiếp và ∑
∈Ji i
A là hạng tử
trực tiếp của M với mỗi tập con hữu hạn J của I.
Nếu ∑
∈Ii i
A là tổng trực tiếp của M thì hạng tử trực tiếp địa phương là
hạng tử trực tiếp.
9
1.2.Một số tính chất của môđun nội xạ
1.2.1.Mệnh đề. Cho N là A-môđun nội xạ. Nếu B⊆A thì N là B-nội xạ và N
là B
A -nội xạ.
Chứng minh. i) Ta chứng minh N là B-nội xạ.
Với mọi môđun X⊆B ta có X⊆A. Mà N là A-nội xạ nên với mỗi đồng
cấu NX: →ϕ luôn mở rộng được thành đồng cấu NA:h → sao cho
hi=α .
Chọn NB: →ψ sao cho i.h=ψ . Khi đó ψ là một mở rộng của ϕ
nên N là B -nội xạ
ii) Ta chứng minh N là B
A -nội xạ.
Giả sử B
X là môđun con của B
A và NB
X: →ϕ là đồng cấu bất
kỳ. Gọi pi là đồng cấu tự nhiên từ A vào B
A và 'pi là thu hẹp của pi trên X. (
pipi =' x). Ta xét biểu đồ sau:
10
ϕ ψ
h∃
AX
N
i
B
i
'pi θ∃ pi
A
B
X
N
ϕ
B
A
X
i
Vì N là A- nội xạ nên tồn tại NA: →θ sao cho i.. ' θ=piϕ . Ta có B⊆
A và )B(i.)B( θ=θ (do B⊆X = )B('ϕpi = 0)0( =ϕ )
Vậy B⊆Kerθ hay Kerpi ⊆Kerθ . Do pi là toàn cấu nên có thể chọn
NB
A: →ψ sao cho θ=ψpi , Xx∈∀ thì Ax∈ ta có
)Bx()x()x(i.)x()x()]x([)Bx( ' +ϕ=ϕpi=θ=θ=ψpi=piψ=+ψ
Vậy ψ là mở rộng của ϕ hay N là B
A -nội xạ.
1.2.2.Mệnh đề. Môđun N là A -nội xạ khi và chỉ khi N là aR-nội xạ, ∈∀a A
Chứng minh. )(⇒ ∈∀a A thì aR⊆A nên theo Mệnh đề 1.2.1,N là aR-nội xạ
)(⇐ Bây giờ ta giả sử N là aR-nội xạ ∈∀a A, ta sẽ chứng minh N là A-
nội xạ.
Gọi X là môđun con của A và NX: →ϕ là đồng cấu bất kỳ. Xét tập
S gồm tất cả các cặp (B,ψ ), trong đó X⊆B⊆A và NB: →ψ là mở rộng
của ϕ quan hệ thứ tự trên S là quan hệ ⊆ . (X,ϕ ) S∈ nên S khác rỗng, S thỏa
Bổ đề Zorn.
Vậy ta có thể tìm được cặp (B,ψ ) tối đại theo nghĩa X⊆B⊆A và
NB: →ψ là đồng cấu mở rộng của ϕ .
Ta chứng minh B cốt yếu trong A.
Giả sử B không cốt yếu trong A, khi đó có môđun Y⊆A, Y≠0 sao cho
B∩Y=0. Khi đó X⊆B⊕Y⊆A. Xác định đồng cấu NYB: →⊕θ như
sau )b(0)b()y()b()yb( ψ=+ψ=θ+θ=+θ .
Như vậy θ là mở rộng của ψ và là mở rộng của ϕ . Do đó (B,ψ )
),YB( θ⊕⊆ mâu thuẫn với (B,ψ ) tối đại.
11
Giả sử B≠A, ta xét phần tử a∈A-B. Đặt K ={ }Bar:Rr ∈∈ .
Do aK = aR∩B nên K ≠0 (Vì AB e⊆ )
Ta xác định đồng cấu µ như sau: NaK: →µ sao cho )()( akak ψµ =
Do N là aR- nội xạ nên µ có thể mở rộng được thành NaR:v →
Ta xác định NaRB: →+λ như sau )ar(v)b()arb( +ψ=+λ ,λ là
ánh xạ , vì giả sử có b’+ar’=b+ar ⇔ (b’-b) +(ar’-ar) = 0
Ta có λ (b’+ar’ )-λ (b+...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status