Lý thuyết điều khiển tự động - pdf 19

Download miễn phí Đồ án Lý thuyết điều khiển tự động



MỤC LỤC
Lời nói đầu 1
Mục lục 2
Để bài 4
I. Xác định hàm truyền đạt từ đường đặc tính cho trước 5
1. Hàm truyền đạt và đặc tính động học 5
1.1. Định nghĩa hàm truyền đạt 5
1.2. Đặc tính động học của hệ thống 5
1.2.1. Đặc tính thời gian 6
1.2.2. Đặc tính tần số 6
2. Cách xác định hàm truyền đạt 7
3. Ứng dụng 9
II. Khảo sát tính ổn định của hệ thống 11
1. Khái niệm tính ổn định của hệ thống 11
1.1. Định nghĩa 11
1.2. Ổn định của hệ tuyến tính 11
2. Tiêu chuẩn ổn định đại số 13
2.1. Điều kiện cần 13
2.2 Tiêu chuẩn ổn định Routh 13
2.3. Tiêu chuẩn ổn định Hurwitz 13
3. Tiêu chuẩn ổn định tần số 14
3.1. Nguyên lý góc quay 14
3.2. Tiêu chuẩn ổn định Mikhailov 15
3.3. Tiêu chuẩn ổn định Nyquist 15
3.4. Tiêu chuẩn ổn định Bode 15
4. Phương pháp quỹ đạo nghiệm số 16
5. Điểm cực ( Pole ) và điểm không ( Zero ) 18
6. Ứng dụng
III. Thiết kế hệ thống PID 20
1. Các quy luật điều chỉnh chuẩn và bộ điều khiển PID 20
1.1. Quy luật tỉ lệ P 20
1.2. Quy luật tỉ lệ tích phân PI 20
1.3. Quy luật điều chỉnh tỉ lệ vi tích phân PID 20
1.4. Bộ điều khiển PID 21
2. Thiết kế hệ thống PID 22
2.1. Phương pháp giải tích 22
2.2. Phương pháp Zeigler-Nichols 22
2.3. Sử dụng Matlab để thiết kế 23
IV. Tổng kết 30
Tài liệu tham khảo 31
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

đầu bằng 0, biến đổi Laplace 2 vế ta được :
Đặt :
G(s) gọi là hàm truyền đạt của hệ thống
Định nghĩa : Hàm truyền đạt của hệ thống là tỷ số giữa biến đổi Laplace của tín hiệu ra và biến đổi Laplace của tín hiệu vào khi điều kiện đầu bằng 0.
* Phép biến đổi Laplace :
Cho f(t) là hàm xác định với mọi t ≥ 0, biến đổi Laplace của f(t) là :
F(s) = L { f(t) } =
Trong đó : s là biến phức ( biến Laplace ),
L là toán tử biến đổi Laplace
F(s) là ảnh của f(t) qua phép biến đổi Laplace
1.2. Đặc tính động học của hệ thống
Đặc tính động học của hệ thống mô tă sự thay đổi tín hiệu ở đầu ra của hệ thống theo thời gian khi có tác động ở đầu vào.
Để khảo sát tính động của hệ thống thì tín hiệu vào thường được chọn là tín hiệu cơ bản như hàm xung đơn vị, hàm nấc đơn vị hay hàm điều hoà. Tuỳ theo dạng của tín hiệu vào thử mà đặc tính động học thu được là đặc tính thời gian hay đặc tính tần số.
1.2.1. Đặc tính thời gian
Đặc tính thời gian của hệ thống mô tả sự thay đổi tín hiệu ở đầu ra của hệ thống khi tín hiệu vào là hàm xung đơn vị hay hàm nấc đơn vị.
Đáp ứng xung là đáp ứng của hệ thống khi tín hiệu vào là hàm xung đơn vị ( hay còn gọi là hàm trọng lượng g(t) của hệ thống ).
c(t) = L -1 {C(s)} = L -1 {G(s)} = g(t) ( Do R(s)=1 )
Đáp ứng nấc là đáp ứng của hệ thống khi tín hiệu vào là hàm nấc đơn vị ( hay còn goi là hàm quá độ h(t) của hệ thống ).
c(t) = L -1 {C(s)} = L -1 {} = = h(t) ( Do R(s) =)
1.2.2. Đặc tính tần số
Đặc tính tần số của hệ thống tuyến tính liên tục mô tả quan hệ giữa tín hiệu ra và tín hiệu vào của hệ thống ở trạng thái xác lập khi thay đổi tần số của tín hiệu dao động điều hoà tác động ở đầu vào của hệ thống.
Như vậy đặc tính tần số của hệ thống là tỉ số giữa tín hiệu ra ở trạng thái xác lập và tín hiệu vào hình sin.
Đặc tính tần số =
Để biểu diễn đặc tính tần số một cách trực quan, ta có thể dùng đồ thị. Có hai dạng đồ thị thường được sử dụng là biểu đồ Bode và biểu đồ Nyquist.
2. CÁCH XÁC ĐỊNH HÀM TRUYỀN ĐẠT
Trên cơ sở hàm quá độ của đối tượng ta có thể xác định gần đúng hàm truyền đạt của nó. Đối tượng ta cần xác định có tính tự cân bằng. dạng tổng quát hàm truyền đạt của đối tượng có tính tự cân bằng được mô tả:
Wd(p) = Kd.W1(p).e-τp
Trong đó: K- hệ số truyền của đối tượng
τ- thời gian trễ
W1(p)- hàm truyền đạt của thành phần tĩnh
Đối tượng gồm 2 khâu mắc nối tiếp nhau là: khâu có trễ có hàm truyền đạt e-τp và khâu tĩnh có hàm truyền đạt Kd.W1(p). giá trị τ được gọi là trễ vận chuyển.
Khâu tĩnh ta có thể lấy gần đúng là khâu quán tính bậc hai.
Xác định hàm truyền đạt của đối tượng
Tín hiệu tác động đầu vào là hàm 5.1(t)
Tín hiệu đầu ra có đường đặc tính như sau:
Hình 1: đường đặc tính của hàm Wd(p)
Từ đồ thị trên ta xác định được Kd và τ
Bỏ qua khâu trễ ta có tín hiệu ra y1(t) của hàm
Ta xác định T1và T2 của hàm truyền . Với tín hiệu vào là hàm 5.1(t) thì
Đồ thị hàm y1(t) có dạng
Hình 2: đường đặc tính đầu ra của hàm W1(p)
Ta sử dụng phương pháp đồ thị giải tích để xác định các tham số T1và T2 từ hàm quá độ. Kẻ đường tiếp tuyến với đường quá độ y1(t) tại điểm uấn. ta xác định được điểm tu, 2tu; xác định được các khoảng cách a, b, c như hình vẽ. ta sẽ xác định được T1và T2 theo a, b, c.
(1.1)
(1.2)
(1.3)
Tại điểm uấn: (1.4)
Từ đò thị ta thấy:
Kết hợp với (1.1):
Thay (1.4) vào:
Ta có:
Từ đồ thị ta thấy:
Biến đổi T1 và T2 theo a, b, c:
=> T2=a( 0,5 – kcb2-0,75)
Bằng phương pháp trên ta có thể xác định được gần đúng hàm truyền đạt
3. ỨNG DỤNG
Dựa theo phương pháp xác định trên và dựa vào đường đặc tính y(t) đã cho ta xác định được các tham số như sau:
Từ đồ thị hình 2 ta xác định được a=20b=225c=137cc
Với đầu vào là hàm 5.1(t)
Và từ đồ thị hình 1 ta xác định được τ=70kd=60
Thay số ta tìm được:
T1=20(300*1372252≈15
T2 = 20-15=5
Vậy hàm truyền W1(p)=30015p+1(5p+1)
Vậy hàm truyền có dạng như sau:
Wd(p)=e-70p*6015p+1(5p+1)
Dùng Matlab ta thu được đường đặc tính y(t) như sau:
Hình 3: đặc tính đầu ra của đối tượng xác định được
* So sánh:
Sau khi áp dụng phương pháp đồ thị giải tích trên ta xác định được hàm truyền đạt Wd(p) có đặc tính đầu ra rất giống với đề bài đã cho. Do vây ta hoàn toàn có thể sử dụng phương pháp này để tìm các hàm truyền đạt khi biết được đường đặc tính đầu ra y(t) của hệ thống.
II. KHẢO SÁT TÍNH ỔN ĐỊNH CỦA HỆ THỐNG
1. Khái niệm tính ổn định của hệ thống
1.1. Định nghĩa
Hệ thống được gọi là ở trạng thái ổn định nếu với tín hiệu vào bị chặn thì đáp ứng của hệ cũng bị chặn.
Yêu cầu đầu tiên đối với một hệ thống điều kiển tự động là hệ thống phải giữ được trạng thái ổn định khi chịu tác động của tín hiệu vào và chịu ảnh hưởng của nhiễu lên hệ thống.
Đối với hệ tuyến tính đặc tính của quá trình quá độ không phụ thuộc vào giá trị tác động kích thích. Tính ổn định của hệ tuyến tính không phụ thuộc vào thể loại và giá trị của tín hiệu vào và trong hệ tuyến tính chỉ tổn tại một trạng thái cân bằng.
Có 3 trạng thái cân bằng :
+ Biên giới ổn định.
+ Ổn đinh.
+ Không ổn định.
1.2. Ổn định của hệ tuyến tính
Một hệ thống điều khiển tuyến tính được biểu diễn bằng phương trình vi phân :
Trong đó : r(t) là tín hiệu vào, c(t) là tín hiệu ra
ai ( ), bj () là các thông số của hệ thống; a0 ≠ 0, b0 ≠ 0
n là bậc của hệ thống
Đây là phương trình vi phân không thuần nhất nên nghiệm tổng quát có dạng :
c(t) = co(t) + cqđ(t)
Trong đó : co(t) là nghiệm riêng của phương trình có vế phải, đặc trưng cho quá trình xác lập, là trị số của đại lượng cần điều khiển và luôn ổn định.
cqđ(t) là nghiệm tổng quát của phương trình không có vế phải, đặc trưng cho quá trình quá độ.
Do đó, tính ổn định của hệ chỉ phụ thuộc vào cqđ(t), và dạng tổng quát của nó là :
cqđ(t) =
Trong đó : là hệ số được xác định bởi các điều kiện ban đầu và cấu trúc, tham số của hệ.
pi là nghiệm thứ i của phương trình đặc tính :
Nghiệm pi có thể được viết dưới dạng :
Hệ thống ổn định nếu :
Hệ thống không ổn định nếu :
Khảo sát tính ổn định của hệ thống theo nghiệm pi ta thu được kết quả :
Hệ ở biên giới ổn định
Hệ không ổn định
Hệ ổn định
Như vậy, tính ổn định của hệ thống chỉ phụ thuộc vào dấu của phần thực nghiệm của phương trình đặc tính.
- Nếu tất cả các nghiệm của phương trình đặc tính hệ thống đều có phần thực âm thì hệ thống ổn định.
- Chỉ cần có 1 nghiệm của phương trình đặc tính có phần thực bằng 0 còn các nghiệm khác có phần thực âm thì hệ ở biên giới ổn định.
- Chỉ cần 1 nghiệm của phương trình đặc tính có phần thực dương thì hệ thống không ổn định.
* Ứng dụng
Xét tính ổn định của hệ thống mà ta đã xác định được ở trên.
Hàm truyền đạt của hệ thống :
Wd(p)=e-70p*6015p+1(5p+1)
Phương trình đặc tính của hệ thống là :
A(p...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status