Thiết kế tuyến cáp quang theo quỹ công suất và thời gian lên trong hệ thống thông tin sợi quang - pdf 20

Download miễn phí Đề tài Thiết kế tuyến cáp quang theo quỹ công suất và thời gian lên trong hệ thống thông tin sợi quang



Trong những năm gần đây, công nghệ thông tin quang đã đạt được
những thành tựu rất lớn trong đó phải kể đển kỹ thuật ghép kênh quang, nó
thực hiện việc ghép các tín hiệu ánh sáng để truyền trên sợi dẫn quang và
việc ghép kênh sẽ không có một quá trình biến đổi về điện nào. Mục tiêu của
việc ghép kênh cũng nhằm tăng dung lượng kênh truyền dẫn và tạo ra các
tuyến thông tin quang có dung lượng cao. Khi tốc độ đạt tới một mức độ
nào đó thì người ta thấy hạn chế của các mạch điện tử trong việc nâng cao
tốc độ truyền dẫn, và bản thân các mạch điện tử không đảm bảo được đáp
ứng xung tín hiệu cực kỳ hẹp cùng với nó là chi phí cao. Để khắc phục tình
trạng trên thì kỹ thuật ghép kênh quang đã ra đời và có nhiều phương pháp
ghép kênh khác nhau nhưng phương pháp ghép kênh quang phân chia theo
thời gian (OTDM-Optical Time Division Multiplexing) là ưu việt hơn cả và
được sử dụng phổ biến trên toàn thế giới. Đối với OTDM, kỹ thuật ghép
kênh ở đây có liên quan đến luồng tín hiệu ghép, dạng mã và tốc độ đường
truyền.



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

hoàn toàn tự do trong nó. Kỹ thuật này cho phép sợi
tránh được các ứng suất bên trong. Trong cấu trúc bọc lỏng, các sợi nằm
trong ống hay trong khe đều được bảo vệ rất tốt. Giải pháp này ít dùng
trong sợi đơn mà thường được dùng cho các sợi ở dạng băng.
2.3.2 Các thành phần của cáp quang
Các thành phần của cáp quang bao gồm: Lõi chứa các sợi dẫn
quang, các phần tử gia cường, vỏ bọc và vật liệu độn.
 Lõi cáp: Các sợi cáp đã được bọc chặt nằm trong cấu trúc lỏng, cả
sợi và cấu trúc lỏng hay rãnh kết hợp với nhau tạo thành lõi cáp.
Lõi cáp được bao quanh phần tử gia cường của cáp. Các thành
phần tạo rãnh hay các ống bọc thường được làm bằng chất dẻo.
 Thành phần gia cường: Thành phần gia cường làm tăng sức chịu
đựng của cáp, đặc biệt là ổn định nhiệt cho cáp. Nó có thể là kim
loại, phi kim, tuy nhiên phải nhẹ và có độ mềm dẻo cao.
 Vỏ cáp: Vỏ cáp bảo vệ cho cáp và thường được bọc đệm để bảo vệ
lõi cáp khỏi bị tác động của ứng suất cơ học và môi trường bên
ngoài. Vỏ chất dẻo được bọc bên ngoài cáp còn vỏ bọc bằng kim
loại được dùng cho cáp chôn trực tiếp.
2.4 Kết luận chương
Kết thúc chương 2 giúp ta hiểu thêm về những đặc tính kỹ thuật
của sợi quang và cáp quang. Để ứng dụng quang trong hệ thống thông tin thì
sợi quang phải được bọc thành cáp. Với các môi trường khác nhau thì cấu
trúc của cáp quang cũng khác nhau để phù hợp với nhu cầu thưc tế. Tuy
nhiên, để đảm bảo chất lượng tốt của hệ thống thì các thiết bị phát quang
cũng như các thiết bị thu quang cũng góp một phần rất quan trọng và phần
này sẽ được nghiên cứu ở chương sau.
CHƯƠNG 3: THIẾT BỊ PHÁT QUANG VÀ THIẾT BỊ THU
QUANG
3.1 Giới thiệu chương
Trong chương này sẽ trình bày một cách khá chi tiết về thiết bị
phát quang như LED, LD hay thiết bị thu PIN, APD cũng như nguyên tắc
hoạt động của nó để từ đó chúng ta có thể lựa chọn được thiết bị phù hợp với
hệ thống và yêu cầu thiết kế.
3.2 Thiết bị phát quang
3.2.1 Cơ chế phát xạ ánh sáng
Giả thuyết có một điện tử đang nằm ở mức năng lượng thấp ( 1E ),
không có điện tử nào nằm ở mức năng lượng mức cao hơn ( 2E ), thì ở điều
kiện đó nếu có một năng lượng bằng với mức năng lượng chênh lệch cấp
cho điện tử thì điện tử này sẽ nhảy lên mức năng lượng 2E . Việc cung cấp
năng lượng từ bên ngoài để truyền năng lượng cần tới một mức cao hơn
được gọi là kích thích sự dịch chuyển của điện tử tới một mức năng lượng
khác được gọi là sự chuyển dời.
Điện tử rời khỏi mức năng lượng cao 2E bị hạt nhân nguyên tử hút
và quay về trạng thái ban đầu. Khi quay về trạng thái 1E thì một năng lượng
đúng bằng 2E - 1E được giải phóng. Đó là hiện tượng phát xạ tự phát và năng
lượng được giải phóng tồn tại ở dạng ánh sáng gọi là ánh sáng phát xạ tự
phát. Theo cơ học lượng tử, bước sóng ánh sáng phát xạ được tính theo công
thức:
12 EE
h
c


(3.1)
Trong đó, jsh 3410.625,6 (hằng số Planck)
810.3c là vận tốc ánh sáng
Bước sóng tỷ lệ nghịch với độ lệch năng lượng của các nguyên tử
cấu tạo nên linh kiện phát quang. Do đó bước sóng ánh sáng phát xạ phản
ánh bản chất của vật liệu.
Khi ánh sáng có năng lượng tương bằng 12 EE  đập vào một điện tử ở
trạng thái kích thích, điện tử ở trạng thái kích thích 2E theo xu hướng sẽ
chuyển dời về trạng thái 1E nay bị kích thích chuyển về trạng thái 2E . Sau
khi hấp thụ năng lượng ánh sáng đập vào (hình 3.1c). Đó là hiện tượng phát
xạ kích thích. Năng lượng ánh sáng phát ra tại thời điểm này lớn hơn năng
lượng ánh sáng phát ra tự nhiên. Còn đối với cơ chế phát xạ của bán dẫn: là
nhờ khả năng tái hợp bức xạ phát quang của các hạt dẫn ở trạng thái kích
thích. Từ điều kiện cân bằng nhiệt, điện tử tập trung hầu hết ở vùng hoá trị
có mức năng lượng thấp và một số ít ở vùng dẫn ó mức năng lượng cao. Giả
Hấp thụ
E2
Phát xạ tự phát Phát xạ kích thích
E1
E2 E2
E1 E1
h 12
h 12
h 12
b a c
h 12
Hình 3.1 Mức năng lượng và quá trình chuyển dịch
sử rằng trong bán dẫn có N điện tử trong đó có 1n điện tử ở vùng hoá trị 2n
điện tử ở vùng dẫn. Khi ánh sáng chiếu từ bên ngoài vào bán dẫn ở trạng thái
này, tỷ lệ giữa bức xạ cưỡng bức và hấp thụ tỷ lệ thuận với tỷ số 2n và 1n .
Việc hấp thụ chiếm đa số và ánh sáng phát ra giảm đi.
3.2.2 Điode LED
Điốt phát quang LED là nguồn phát quang rất phù hợp cho các hệ
thống thông tin quang tốc độ không quá 200Mbit/s sử dụng sợi dẫn quang đa
mode.
Để sử dụng tốt cho hệ thống thông tin quang, LED phải có công
suất bức xạ cao, thời gian đáp ứng nhanh và hiệu suất lượng tử cao. Sự bức
xạ của nó là công suất quang phát xạ theo góc trên một đơn vị diện tích của
bề mặt phát và được tính bằng Watt. Chính công suất bức xạ cao sẽ tạo điều
kiện cho việc ghép giữa các sợi dẫn quang và LED dễ dàng và cho công suất
phát ra từ đầu sợi lớn.
Thời gian đầu, khi công nghệ thông tin quang chưa được phổ biến,
điốt phát quang thường dùng cho các sợi quang đa mode. Nhưng chỉ sau đó
một thời gian ngắn, khi mà các hệ thống thông tin quang phát triển khá rộng
rãi, các sợi dẫn quang đơn mode được đưa vào sử dụng trong các hệ thống
thông tin quang thì LED cũng đã có dưới dạng sản phẩm là các modul có sợi
dẫn ra là sợi dẫn quang đơn mode. Công suất quang đầu ra của nó ít phụ
thuộc vào nhiệt độ và thường chúng có mạch điều khiển đơn giản.
Thực nghiệm đã đạt được độ dài tuyến lên tới 9,6Km với tốc độ
2Gbit/s và 100Km với tốc độ 16Mbit/s. LED có ưu điểm là giá thành thấp và
độ tin cậy cao, tuy nhiên chúng phù hợp với mạng nội hạt, các tuyến thông
tin quang ngắn với tốc độ bit trung bình thấp.
3.2.3 Điốt Laser
Nói chung, Laser có rất nhiều dạng và đủ các kích cỡ. Chúng tồn
tại ở dạng khí, chất lỏng, tinh thể hay bán dẫn. Đối với các hệ thống thông
tin quang, các nguồn phát Laser là các Laser bán dẫn và thường gọi chúng là
LD. Các loại Laser có thể là khác nhau nhưng nguyên lý hoạt động cơ bản
của chúng là như nhau. Hoạt động của Laser là kết quả của ba quá trình mấu
chốt là: hấp thụ phôton, phát xạ tự phát và phát xạ kích thích. Ba quá trình
này tương tự cơ chế phát xạ ánh sáng và được trình bày ở mục 3.2.1.
Các hệ thống thông tin quang thường là có tốc độ rất cao, hiện nay
nhiều hệ thống thông tin quang có tốc độ 2.5Gbit/s đến 5Gbit/s đã được đưa
vào khai thác. Băng tần của hệ thống thông tin quang đòi hỏi khá lớn, như
vậy các LD phun sẽ phù hợp hơn là các điốt phát quang LED. Các LD thông
thường có thời gian đáp ứng nhỏ hơn 1ns, độ rộng phổ trung bình từ 1nm
đến 2 nm và nhỏ hơn, công suất ghép vào sợi quang đạt vài miliwatt.
3.2.4 Nhiễu trong nguồn phát Laser
Khi các LD được sử dụng trong các hệ thống thông tin quang có
tốc độ cao, thì một số hoạt động của Laser bắt đầu xuất hiện và tốc độ biến
đổi càng cao thì chúng càng thể...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status