Nguyên lý Dirichlet với các bài toán đại số hình học - pdf 28

Link tải luận văn miễn phí cho ae Kết nối

CHUYÊN ĐỀ 24:

NGUYÊN LÝ DIRICHLET
VỚI CÁC BÀI TOÁN ĐẠI SỐ HÌNH HỌC

I. Giới thiệu nguyên Tắùc Dirichlet:
Nguyên tắc Dirichlet là một định lý có thể chứng minh dễ dàng bằng phản chứng đã được nhà toán học Đức Dirichlet (1805-1859) áp dụng để chứng minh nhiều định lý toán học.
Nguyên tắc Dirichlet thường được phát biểu dưới dạng hình ảnh đơn giản như sau:” Nếu nhốt 9 chú thỏ vào 4 cái chuồng thì phải có một cái chuồng nhốt ít nhất là 3 chú thỏ. Nguyên tắc này còn phát biểu dưới dạng khác:
-Dạng 1: nếu có một ánh xạ từ tập hợp M có n+1 phần tử vào tập hợp N có n phần tử thì ít nhất cũng có hai phần tử của tập hợp M có cùng một ảnh là một phần tử của tập hợp M có cùng một ảnh là một phần tử của tập hợp N qua ánh xạ đó
-Dạng 2: Nếu tập hợp E gồm n phần tử được phân ra thành n tập hợp con đôi một không giao nhau mà N>nk thì có ít nhất một tập hợp con chứa nhiều hơn k phần tử
-Dạng 3: Minh hoạ bằng hình ảnh
Nếu nhốt N chú thỏ vào n chuồng mà N>nk thì có ít nhất một chuồng nhốt nhiều hơn k chú thỏ .
II. Vận dung nguyên lý Dirichlet vào các bài toán đại số:
Bài 1: Chứng minh rằng tồn tại số có dạng 20032003 …. 200300…0 chia hết cho 2002
Hướng dẫn giải
-Xét dãy số gồm 2002 số hạng sau:
2003,2003 …. 2003 2003 ….2003
2002 lần 2003
Chia tất cả các số hạng của dãy cho 2002 có 2002 số dư từ 1 đến 2002 (không thể có số dư 0 vì các số hạng của dãy là các số lẻ). Có 2002 phép chia, nên theo nguyên tắc Dirichlet phải có ít nhất hai số có cùng số dư khi chia cho 2002.
Giả sử hai số đó là am và an (m,n N ); 1<=m <n< 2002)
Với am = 2003 2003… 2003 ; an = 2003 2003 … 2003

Ta có: (an –am) chia hết cho 2002
Hay 2003 2003 … 2003 00 ….00 chia hết 2002

Vậy tồn tại một số có dạng 2003 2003 … 2003 00 … 00 luôn chia hết cho 2002
Bài 2: CMR từ 52 số nguyên bất kỳ luôn có thể chọn ra hai số mà tổng hay hiệu của chúng chia hết cho 100
Hướng dẫn giải :
Tất cả các số dư trong phép chia cho 100 được chia thành 51 nhóm như sau: {0} ;{1;99},{ 2;98}, … ,{49;51}; {50}. Có 52 số nên theo nguyên tắc Dirichlet có hai số mà cacù số dư khi chia cho 100 thuộc cùng một nhóm trên. Hai số này có hiệu chia hết cho 100 (Nếu số dư của chúng bằng nhau ) hay có tổng chia hết cho 100 (nếu số dư của chúng khác nhau)
Bài 3: CMR với mọi số tự nhiên a, b, c, d đều tìm được các số lấy các giá trị –1, 0, 1 (Không đồng thời lấy gia trị 0) sao cho hay bằng 0 hay chia hết cho 11
Xét các số có dạng ma + nb + pc + qd với a : b : c: d thuộc N và m; n; p; q lấy các giá trị 0;1. Có 2.2.2.2=16 số như thế khi chia các số này cho 11 theo nguyên lý Dirichlet có ít nhất 2 số có cùng số dư. Giả sử là T=m1a +n1b +p1c+q1d và E=m2a+n2b+p2c+q2d. Hai số T và E có hiệu chia hết cho 11 . Do dó :[(m1-m2)*a+(n1-n2)*b+(p1-p2)*c+(q1-q2)*d] chia hết 11.
Vì T, E khác nhau nên m1-m2; n1-n2; p1-p2; q1-q2 không đồng thời bằng 0. Và vì m1, m2, n1, n2, p1, p2, q1, q2 nhận các giá trị 0, 1 nên =m1-m2 ; = n1-n2
= p1-p2; =q1-q2. Lấy các giá trị –1,0,1
Bài 4: Cho 2002 số tự nhiên khác 0 sau cho 4 số khác nhau bất kỳ trong chúng đều lập thành một tỷ lệ thức. Chứng minh rằng trong các số đã cho luôn luôn tồn tại ít nhất 501 số bằng nhau.
Ta chứng minh trong 2002 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát giả sử a1<a2<a3<a4<a5 (1)
Theo đề bài ta có : a1.a4 =a2.a3 (2)
Từ (1) không xảy ra : a1.a2 =a3.a4 hay a1.a3=a2.a4.
Tương tự 4 số khác nhau: a1, a2, a3, a4, a5 thì a1.a5=a2.a3 (3)
Từ (2)và (3) có: a1.a4=a1.a5
Suy ra: a4=a5. (Mâu thuẫn). Vậy trong 2002 số tự nhiên khác nhau đã cho không thể có hơn 4 số khác nhau. Mà 2002=4*500+2. Theo nguyên tắc Dirichlet luôn tìm được ít nhất 500+1 =501 số bằng nhau.
Bài 5: CMR trong các số tự nhiên thế nào cũng có k số sao cho 198k – 1 chia hết cho 105.
Hướng dẫn giải:
Cho k lần lượt lấy 105+1 giá trị liên tiếp từ 1 trở đi, ta được 105+1 giá trị khác nhau của 1983k – 1 .Chia 105+1 số này cho 105 ta chỉ có nhiều nhất là 105số dư. Vì vậy theo nguyên tắc Dirichlet phải có ít nhất hai số cho cùng số dư khi chia cho 105. Giả sử số đó là 1983m-1 và 1983n-1 (m>n) Thế thì hiệu của hai số này phải chia hết cho 105 (1983m-1)-(1983m-1)chia hết cho 105.
Mà (1983m-1)-(1983n-1)=1983m-1983n=1983n(1983m-n-1).
Nhưng 105và 1983n nguyên tố cùng nhau, do đó phải có 1983m-n-1 chia hết cho 105. Như vậy có số k’=m-n sao cho 1983k –1 chia hết cho 105.
Bài 6: a) CMR trong m số nguyên bất kỳ bao giờ cũng có một số chia hết cho m hay tổng của một nhóm các số trong m số đó chia hết cho m.
b) Có hay không một số có dạng 19911991 …. 1991 0000000 chia hết cho 1990
Giải
a) Gọi m số nguyên đã đánh giá là a1, a2, …. , am. Nếu không có số nào chia hết cho m thì ta lập m tổng :
a1
a1+a2
a1+a2+a3
…..
a1+a2+a3+…am
Có tất cả hai trừơng hợp
-Một trong các tổng trên chia hết cho m
-Không có một tổng nào trong các tổng trên chia hết cho m như vậy số dư khi chia mỗi tổng trên cho m là một số từ 1 đến m-1 (Có tất cả m-1 số dư). Ta có m tổng, do đó theo nguyên tắc Dirichlet, phải có hai tổng có cùng số dư (# 0) khi chia cho m. Hiệu của hai tổng này ( là tổng của một số các số đã cho) chia hết cho m .
b) Ta lặp dãy số có dạng:
1991
19911991
199119911991
….
19911991….1991




XfLR11A4oaSu21a
xem thêm
ỨNG DỤNG NGUYÊN LÍ DIRICHLET VÀO GIẢI BÀI TOÁN TÔ MÀU HÌNH
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status