Giáo trình Khoa học đất - Dung dịch đất - pdf 21

Download miễn phí Giáo trình Khoa học đất - Dung dịch đất



Khi nước đi vào đất khô, ngay lập tức nó bắt đầu hydrat hoá bề mặt các pha rắn có
trong đất. Ở phạm vi nhỏ, các phân tử nước đầu tiên xâm chiếm các vết nứt nhỏ hay các
khiếm khuyết về cấu trúc khác trên bề mặt khoáng. Khi xâm nhập vào các vùng bị phá vỡ này,
các phân tử nước bị hút vào các ion lộ trần của khoáng vật và bắt đầu hình thành các phức chất
solvat hoá với chúng. Nếu liên kết hoá học trong khoáng vật đó có rất ít đặc tính cộng hoá trị
[ví dụ NaCl (halit) hay CaSO4.H2O (thạch cao)], các ion sonvát hoá sẽ dễ dàng tách khỏi cấu
trúc của khoáng vật và khuếch tán vào dung dịch đất.



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

c phản ứng đối với Mn2+ và SO42- giống
hệ số tỷ lượng của hai chất này trong phương trình 4.1, và (c) [Mn2+] = [SO42-]. Giá trị thực
nghiệm của kf trong các dung dịch pha loãng bằng khoảng 2 ´ 1010 mol-1 dm3 s-1 và chu kỳ
bán huỷ tương ứng (hàng 3 trong bảng 4.2) là bậc 10 ms, nếu [Mn2+]0 = 10 mmol m-3. Chú ý
rằng, theo định nghĩa, tổng bậc của phản ứng trong công thức 4.1 là a + b = 2, không tính đến
nồng độ của các chất phản ứng được coi bằng nhau hay không.
Bảng 4.3 Các tham số động học của các phản ứng hình thành và phân ly phức chất ở
25oCa
Phản ứng Bậc b Chu kỳ bán huỷ c
CO2 + H2O = H2CO3* 1 10
Fe3+ + H2O = FeOH2+ + H+ 1 10-7
FeOH2+ + H+ = Fe3+ + H2O 2 10-6
Mn2+ + SO42- = MnSO 2 10-5
MnSO = Mn2+ + SO42- 1 10-9
Ni2+ + C2O42- = NiC2O40 2 1
57
NiC2O40 = Ni2+ + C2O42- 1 10-1
Al3+ + F- = AlF2+ 2 103 d
CO2 + OH- = HCO3- 2 10
HCO3- = CO2 + OH- 1 103
Ca(H2O)62+ + H2O' = Ca2+(H2O)5H2O' + H2O 1 10-8e
Ghi chú:
a J.F.Pankow và J.J.Morgan, 1981).
b Tổng số bậc đối với từng chất không phải là nước
c Nồng độ ban đầu 10 mmol m-3 được thừa nhận cho các phản ứng bậc 2.
d Số liệu tại pH 3, B.J. Pankey, H. H. Patterson và C. S. Cronan,1986.
e A. E. Martell (ed.), 1978.
Không có chu kỳ bán huỷ nào trong bảng 4.3 lớn hơn 1 h (3.6 ´ 103 s), chứng tỏ các
phản ứng liên quan đến phức chất tan diễn ra tương đối nhanh. Điều kiện cân bằng được xác
định khi Rf = Rb nếu tốc độ phản ứng được biểu thị như ở phương trình 4.2. Nếu Rf và Rb
cũng tỷ lệ với nồng độ các chất tăng lên theo luỹ thừa bằng các hệ số tỷ lượng (ví dụ như trong
công thức 4.3 nếu a = b = d = 1), thì điều kiện cân bằng đó dẫn tới biểu thức sau:
(4.5)
như đã áp dụng cho phản ứng trong phương trình 4.1, trong đó [MSO ]e là nồng độ của
MSO tại điểm cân bằng... Tham số cKs được xác định bởi vế phải của phương trình 4.5 được
gọi là hằng số bền điều kiện đối với phức chất MSO . Nó là "điều kiện" bởi vì nó có giá trị
bằng kf/kb, thường là một hàm của thành phần dung dịch, nhiệt độ và áp suất.
Ví dụ ở 298 K, cKs » 2 ´ 1010 mol-1 dm3 s-1/2 x 109 s-1 = 10 mol-1 dm3 trong
trường hợp MnSO . Vì vậy tỷ số [MnSO ]/[Mn2+][SO42-] bằng 10 mol-1 dm3 tại điểm cân
bằng. Phương trình 4.5 cho thấy cKs có thể được tính hay bằng số liệu động học (kf và kb)
hay bằng số liệu cân bằng ([ ]e). Đơn vị nồng độ được dùng trong ví dụ này được trình bày ở
phần phụ lục.
4.3 Cân bằng chất (Speciation equilibria)
Tổng nồng độ của các cấu tử hoà tan trong dung dịch đất là tổng các dạng "tự do" (ví
dụ phức chất solvát hoá) và các dạng phức chất của các cấu tử đủ bền để được xem là các chất
hoá học xác định. Sự phân bố của một cấu tử cho trước trong số các dạng hoá học của nó có
thể được mô tả bằng hằng số bền điều kiện như trong phương trình 4.5 nếu các phản ứng hình
thành và phân ly phức chất, hay ở trạng thái cân bằng, hay không thuận lợi về mặt động học
đến mức các chất phản ứng có thể được đánh giá là dạng bền hoàn toàn. Yêu cầu này của trạng thái
bền thường được thoả mãn ở các đất tự nhiên: cả sự trao đổi ion và sự hình thành phức chất
tan thường là phản ứng nhanh còn các phản ứng oxy hoá - khử hay kết tủa - phân ly rất chậm
58
về thời gian ở phòng thí nghiệm hay thí nghiệm đồng ruộng. Nhưng những sự tổng quát hoá
này có thể sai trong các trường hợp đặc biệt. Như số liệu trong bảng 4.3, chu kỳ bán phân huỷ
của các phản ứng hình thành và phân ly phức chất kim loại trong dung dịch nước ở nồng độ
đặc trưng cho các loại đất dao động khoảng trên 15 bậc, từ 10-9s đối với sự phân ly MnSO40
tới 106s cho sự hình thành FeCl2+. Hai đầu của khoảng thời gian này cho thấy không có giới
hạn trong thực tế cho việc ứng dụng hệ số bền có điều kiện đối với dung dịch đất, ngược lại
khoảng giữa bên trên từ 102 - 104 s (ví dụ sự hình thành phức chất AlF2+) yêu cầu phải xem
xét cẩn thận thời điểm cân bằng.
Cách sử dụng hệ số bền có điều kiện để tính sự phân bố của các chất hoá học có thể
được minh hoạ qua việc nghiên cứu các dạng Al hoà tan trong một dung dịch đất chua. Giả sử
pH của dung dịch đất là 4,6 và tổng nồng độ Al là 10mmolm-3. Nồng độ của các phối tử hình
thành phức chất là sunfat, florua và axit fulvic có các giá trị tương ứng là 50, 2 và 10mmolm-3.
Các phức chất giữa các phối tử và Al là AlSO , AlF2+ và AlL2+, trong đó L là các phối tử
axit fulvic. Các phức chất này không phải là những phức chất duy nhất được tạo ra với Al,
SO4, F hay L và 3 phối tử này cũng không phải là những phối tử duy nhất hình thành phức
chất Al trong dung dịch đất, nhưng chúng sẽ giúp cho việc tính toán cân bằng chất theo cách
tương đối đơn giản.
Theo khái niệm cân bằng chất, nồng độ tổng số của Al (ví dụ được xác định bằng
phương pháp 8-hydroxyquinolin để loại các chất polime) là tổng của các dạng tự do và dạng
phức:
AlT = [Al3+] + [AlOH2+] + [AlSO4+] + [AlF2+] + [AlL2+]
(4.6)
trong đó, các ngoặc vuông nghĩa là nồng độ các chất tính theo mol trên dm3 theo quy ước.
(Chất chứa nhóm hydroxyl AlOH2+ là dạng chủ yếu khi pH < 5). Mỗi phức chất trong phương
trình 4.6 có thể được mô tả bằng một hằng số bền điều kiện:
cK1 = 109,0 mol-1 dm3
(4.7a)
cK2 = 103,2 mol-1 dm3
(4.7b)
cK3 = 107,0 mol-1 dm3 (4.7c)
59
cK4 = 108,6 mol-1 dm3
(4.7d)
Nói chung mỗi biểu thức hằng số bền là nồng độ của các loại ion tự do Al3+. Do đó, phương
trình 4.6 có thể được viết lại ở dạng sau:
AlT = [Al3+]
= [Al3+]{1 + cK1[OH-] +cK2[SO ] + cK3[F-] + cK4[L-]
(4.8)
Tỷ lệ [Al3+] và AlT được gọi là hệ số phân bố của Al3+, có thể được tính bằng phương trình
4.8 nếu nồng độ các ion tự do của 4 phối tử tạo phức đã biết:
(4.9)
Đối với OH-, chúng ta có thể tính nồng độ ion tự do từ giá trị của pH:
(4.10)
trong đó cKw là sản phẩm ion hoá của nước dưới các điều kiện tồn tại trong dung dịch đất.
Đối với dung dịch loãng ở 250C và dưới áp suất 1 atm, cKw » 10-14 mol-2 dm6 và [H+] »
10-pH. Do vậy, trong ví dụ này [OH-] » 10-9 mol dm-3 (pH 4.6).
Đối với các phối tử khác trong phương trình 4.9, nồng độ ion tự do không thể tính
được trực tiếp. Căn cứ vào giá trị đã cho khá lớn của cK4 so với cK2 và cK3, ta có lý do để
cho rằng [AlL2+] sẽ gần bằng AlT và LT trong ví dụ này. Như vậy trong phép gần đúng đầu
tiên, công thức 4.7d có thể được dùng để tính aAl:
= cK4 = 108,6 dm3 mol-1 (4.11)
trong đó:
60
(4.12a)
tương ứng là hệ số phân bố của AlL2+ và L-, và LT là tổng nồng độ của "phối tử axit fulvic".
Trong phương trình 4.11, giả sử aAlL » 1 và aAl » aL, kết quả sẽ là:
a » (cK4LT)-1 = 10-3,6
và aAl » 16 ´ 10-2. Vì vậy chỉ khoảng 2% AlT là ở dạng Al3+. Kết quả gần đúng này có thể
được dùng để tính hệ số phân bố cho mỗi phức chất vô cơ (giả thiết aAlL » 1):
» 1,6 ´ 10-2 (4.12b)
» 1,3 ´ 10-3 (4.12c)
» 0,32 (4.12d)
Giả thuyết aAlL » 1 không phù hợp với giá trị lớn tính được đối với aAlF trong phương trình
4.12d, hàm ý là aAlL < 0,7.
Các tính toán trong phương trình 4.12 có thể được cải tiến khi xem xét phối tử ở mức
độ chi tiết hơn:
SO4T = [SO ] + [AlSO ] = [SO ]{1 + cK2[Al3+]}
(4.13a)
FT = [F-] + [AlF2+] = [F-]{1 + cK3[Al3+]} (4.13b)
LT = [L-] + [AlL2+] = [L-]{1 + cK4[...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status