Luận văn thạc sĩ về SOL KHÍ và mô HÌNH RegCM - Pdf 22

1

LỜI CẢM ƠN

Trước tiên, tôi xin gửi lời cảm ơn tới thầy hướng dẫn luận văn của tôi,
Tiến sĩ Nguyễn Văn Thắng, đã tạo mọi điều kiện, động viên và giúp đỡ tôi
hoàn thành tốt luận văn này. Tôi cũng xin chân thành cảm ơn tới phó giáo sư,
Tiến sĩ Phan Văn Tân. Trong suốt quá trình nghiên cứu, thầy đã kiên nhẫn
hướng dẫn, trợ giúp và động viên tôi rất nhiều. Sự hiểu biết sâu sắc về khoa
học, cũng như kinh nghiệm của thầy chính là tiền đề giúp tôi đạt được những
thành tựu và kinh nghiệm quý báu. Tôi xin cảm ơn Tiến sĩ Hồ Minh Hà, Tiến
sĩ Bùi Hoàng Hải và người bạn Lương Mạnh Thắng đã quan tâm, giúp đỡ,
thảo luận và đưa ra những chỉ dẫn, đề nghị cho luận văn của tôi.
Xin cám ơn Khoa Khí tượng Thủy văn và Hải dương học, Phòng sau
đại học, Trường đại học Khoa học Tự Nhiên đã tạo điều kiện thuận lợi cho tôi
làm việc trên khoa để tiến hành tốt luận văn.
Tôi cũng xin cảm ơn bạn bè và gia đình đã luôn bên tôi, cổ vũ và động
viên tôi những lúc khó khăn để có thể vượt qua và hoàn thành tốt luận văn
này.
Tôi xin chân thành cảm ơn!
2

MỤC LỤC

MỤC LỤC 2

MỤC LỤC BẢNG 4

MỤC LỤC HÌNH 5

MỞ ĐẦU 8


1.1.2.2.

Tác động của sol khí lên mây và giáng thủy 16

1.1.2.3.

Tác động của sol khí lên Albedo bề mặt và năng lượng bức xạ mặt trời tới
bề mặt trái đất 23

1.1.2.4.

Ảnh hưởng của sol khí lên hoàn lưu khí quyển 25

1.2.

TỔNG QUAN VỀ MÔ HÌNH RegCM3 26

1.2.1.

Giới thiệu về mô hình RegCM3 26

1.2.2. Lịch sử của RegCM 28
1.2.3.

Động lực học 32

1.2.3.1.

Phương trình động lượng phương ngang 32

1.2.4.3.

Lớp biên hành tinh 36

1.2.4.4.

Sơ đồ giáng thủy đối lưu 37

1.2.4.5.

Sơ đồ giáng thủy qui mô lớn 37

1.2.4.6.

Tham số hóa thông lượng đại dương 38

1.2.4.7.

Sơ đồ Gradient khí áp 38

1.2.4.8.

Mô hình hồ 38

3

1.2.4.9.

Sinh quyển 39


2.1.3.

Sol khí Cacbon 47

2.1.4.

Các điều kiện biên cho SOx và sol khí Cacbon 48

2.1.5.

Tác động trực tiếp và gián tiếp của sol khí 49

2.1.5.1.

Hấp thụ và Tác động bán trực tiếp của Cacbon đen 50

2.1.5.2.

Tác động gián tiếp loại 1 51

2.1.5.3.

Tác động gián tiếp loại 2 52

2.2.

THU THẬP SỐ LIỆU ĐẦU VÀO CHO MÔ HÌNH RegCM 56

CHƯƠNG 3. KẾT QUẢ TÍNH TOÁN VÀ PHÂN TÍCH 58



TÀI LIỆU THAM KHẢO 81
4

MỤC LỤC BẢNG

Bảng 1.a. Những tác động gián tiếp khác nhau của sol khí và hiệu ứng biến đổi thông
lượng bức xạ tại đỉnh khí quyển 19
Bảng 1.1.b. Những tác động gián tiếp khác nhau của sol khí và ảnh hưởng của nó tới bức
xạ sóng ngắn tại bề mặt đất (cột 2 đến cột 4) và tới giáng thuỷ (cột 5 đến cột 7) 19
Bảng 2.1. Bốn trường hợp thử nghiệm trong mô hình dự báo khí hậu RegCM Error!
Bookmark not defined.
Bảng 3.1. Trung bình toàn miền cán cân thuần bức xạ tại đỉnh khí quyển, bề mặt và khí
quyển trong 4 tháng đặc trưng cho bốn mùa (Đơn vị: W/m2) 65
Bảng 3.2. Trung bình lượng mây phủ ở mực dưới 750mb (Đơn vị: phần trăm) 66
5

MỤC LỤC HÌNH

Hình 1.1. Núi lửa Pinatubo phun trào và hàng tấn sol khí bị đưa vào khí quyển (1991) 1
Hình 1.2. Sol khí núi lửa 1
Hình 1.3. Bụi sa mạc 1
Hình 1.4. Sol khí tạo bởi con người 1
Hình 1.5. Những cơ chế bức xạ khác nhau của mây gây ra bởi sol khí. 15
Hình 1.6. Tác động của mật độ hạt mây đến độ phản xạ của mây (albedo) 1
Hình 1.7. Mô tả những tác động khác nhau của sol khí đã được trình bày trong bảng 1 21
Hình 1.8. Lưới phương thẳng đứng của mô hình RegCM 30

Hình 3.14. Chênh lệch nhiệt độ và lượng mưa trung bình toàn miền của 3 trường hợp có
tính đến tác động của sol khí so với trường hợp chuẩn, không tính đến sol khí a) nhiệt độ
trung bình toàn miền (
0
C), b) lượng mưa trung bình toàn miền (mm/tháng) 68
Hình 3.15a. Mô phỏng nhiệt độ và lượng mưa của tỉnh Lai Châu năm 2000 69
Hình 3.15b. Mô phỏng nhiệt độ và lượng mưa của tỉnh Điện Biên năm 2000 70
Hình 3.15c. Mô phỏng nhiệt độ và lượng mưa của tỉnh Sơn La năm 2000 70
Hình 3.16a. Mô phỏng nhiệt độ và lượng mưa của tỉnh Bắc Quang năm 2000 71
Hình 3.16b. Mô phỏng nhiệt độ và lượng mưa của tỉnh Sa Pa năm 2000 71
Hình 3.16c. Mô phỏng nhiệt độ và lượng mưa của tỉnh Cao Bằng năm 2000 72
Hình 3.16d. Mô phỏng nhiệt độ và lượng mưa của tỉnh Bắc Cạn năm 2000 72
Hình 3.16e. Mô phỏng nhiệt độ và lượng mưa của tỉnh Lạng Sơn năm 2000 72
Hình 3.16g. Mô phỏng nhiệt độ và lượng mưa của tỉnh Móng Cái năm 2000 73
Hình 3.17a. Mô phỏng nhiệt độ và lượng mưa của Hà Nội năm 2000 74
Hình 3.17b. Mô phỏng nhiệt độ và lượng mưa của tỉnh Nam Định năm 2000 74
Hình 3.17c. Mô phỏng nhiệt độ và lượng mưa của tỉnh Thanh Hóa năm 2000 74
Hình 3.18a. Mô phỏng nhiệt độ và lượng mưa của Vinh năm 2000 75
7

Hình 3.18b. Mô phỏng nhiệt độ và lượng mưa của tỉnh Đồng Hới năm 2000 75
Hình 3.18c. Mô phỏng nhiệt độ và lượng mưa của Huế năm 2000 76
Hình 3.19a. Mô phỏng nhiệt độ và lượng mưa Đà Nẵng năm 2000 76
Hình 3.19b. Mô phỏng nhiệt độ và lượng mưa Quy Nhơn năm 2000 77
Hình 3.20a. Mô phỏng nhiệt độ và lượng mưa PlayCu năm 2000 77
Hình 3.20b. Mô phỏng nhiệt độ và lượng mưa Buôn Mê Thuột năm 2000 78
Hình 3.20c. Mô phỏng nhiệt độ và lượng mưa Đà Lạt năm 2000 78
Hình 3.21a. Mô phỏng nhiệt độ và lượng mưa Cần Thơ năm 2000 79
Hình 3.21b. Mô phỏng nhiệt độ và lượng mưa Ca Mau năm 2000 79


Sol khí là các phần tử nhỏ lơ lửng trong khí quyển. Chúng ta có thể nhận
thấy sự hiện diện của sol khí khi chúng đủ lớn thông qua sự phân tán và hấp thụ tia
bức xạ mặt trời của sol khí. Sự phân tán bức xạ mặt trời của sol khí có thể làm giảm
khả năng nhìn và làm ửng đỏ khi mặt trời mọc và lặn. Những sol khí này có nhiều
nguồn gốc, có thể là nguồn gốc tự nhiên như từ đất, từ muối biển, từ các đám cháy
thực vật hoặc cũng có thể do con người tạo ra từ việc đốt cháy các chất thải, nhiên
liệu than và dầu trong các khu công nghiệp, tạo ra các phần tử sulfat, cacbon đen,
Sol khí tác động trực tiếp
và gián tiếp lên trữ lượng bức xạ
của Trái Đất và khí hậu. Tác động
trực tiếp là các sol khí trực tiếp
phân tán và hấp thụ các tia xạ bức
xạ mặt trời trong không gian. Tác
động gián tiếp là khi sol khí ở tầng
thấp của khí quyển có thể làm thay
đổi kích cỡ của các phần tử mây,
làm thay đổi phản xạ và hấp thụ
bức xạ mặt trời của mây, và như
vậy tác động lên trữ lượng năng
lượng của Trái Đất.
Sol khí cũng có thể gây ra
các phản ứng hóa học. Đáng kể
nhất là phản ứng có tác động phá
hoại ozon ở tầng bình lưu. Trong
suốt mùa đông ở các khu vực cực,
10

sol khí phát triển hình thành các đám mây bụi ở tầng bình lưu cực. Các phản ứng
hóa học xảy ra ở khu vực tập trung nhiều các phần tử mây bụi. Các phản ứng này
chủ yếu là phản ứng Clo và cuối cùng chúng phá hủy ozon ở tầng bình lưu. Chứng

và Cacbon hữu cơ dễ bay hơi bị oxi hóa và ngưng tụ lại. Cấp
có đường kính lớn nhất được gọi là phần tử thô (xấp xỉ 1µm) được tạo ra rất cơ học,
gió thổi trên khu vực bụi hoặc bốc hơi từ bụi nước biển,… Giữa các phần tử cực
nhỏ và phần tử thô là phần tử nhỏ cỡ 0,1 đến 1µm. Dạng này được quy cho là dạng
tích tụ vì các sol khí ở kích thước này tích tụ từ các phần tử cực nhỏ và có xu hướng
tồn tại lâu dài trong khí quyển (vài ngày) bởi lắng động chậm và tốc độ tích tụ.
Dạng này liên quan chủ yếu tới trữ lượng năng lượng Trái Đất và biến đổi khí hậu
bởi tương tác của chúng với bức xạ mặt trời, (hầu hết năng lượng bức xạ ở trong
khoảng phổ cỡ 0,5 µm), và các phần tử này cũng có kích cỡ tương tự như sóng dài
phân tán ánh sáng, nhân ngưng kết mây CCN và nhân ngưng kết băng (IN). Dạng
sol khí này thông thường tồn tại trong khí quyển vài ngày có khi vài tuần. Các phần
tử sol khí khí quyển có thể bắt nguồn từ các phần tử cơ bản hoặc được hình thành từ
11

Hình 1.2. Sol khí núi lửa
(Tham khảo trên báo Science Daily)
tiền chất khí (nguồn thứ hai), đó là các phần tử khí chuyển đổi đã nói ở trên (SO
2
,
NO
x
, và VOC,…). Một vài nguồn từ tự nhiên đưa vào khí quyển như từ núi lửa, bụi
từ sóng biển, đại dương; Mặt khác, các phát thải công nghiệp, cháy sinh khối và
phát thải đất bụi từ các hoạt động nông nghiệp do con người gây nên. Trên toàn cầu,
thông lượng sol khí khí quyển được ước chừng khoảng 3440 Tg/năm, trong đó 10%
từ các hoạt động của con người. Tuy nhiên, các sol khí do con người gây ra chủ yếu
là sol khí sulfat và cacbon (cacbon đen và cacbon hữu cơ), về thực chất nó đã tăng
kể từ thời kỳ tiền công nghiệp (IPCC, 1995), và thậm chí còn vượt các nguồn tự
nhiên trên toàn cầu, và có trội hơn hẳn ở vùng đô thị và công nghiệp. Sự phát thải
sol khí là vấn đề lớn trên toàn cầu, sol khí khu vực từ các nguồn ảnh hưởng hoạt

1.1.1.2. Bụi sa mạc
Loại thứ hai của sol khí có tác động đáng kể lên khí hậu là bụi sa mạc. Các
bức tranh từ các vệ tinh khí tượng thường cho thấy màn bụi trên Đại Tây Dương từ
các sa mạc ở Bắc Phi. Theo như quan trắc bụi rơi
khỏi các lớp này tới các vùng khác nhau trên lục địa
Châu Mỹ. Tương tự như màn bụi của sa mạc trên
lục địa Châu Á. Vào tháng 9 năm 1994 Lidar, STS-
64, đã đo được lượng lớn bụi sa mạc trong tầng thấp
của khí quyển trên lục địa Châu Phi. Các phần tử
bụi nhẹ được thổi từ bề mặt sa mạc có liên quan lớn
tới sol khí khí quyển, thông thường chúng rơi khỏi
khí quyển sau khi bay thời đoạn ngắn nhưng chúng có thể được thổi lên độ cao
khoảng 15.000 ft (khoảng 4.500 m) hoặc cao hơn bởi sự cuốn hút mạnh mẽ của các
cơn bão cát.
Bụi là vô cơ, do vậy bụi hấp thụ cũng như phân tán tia bức xạ mặt trời.
Thông qua hấp thụ tia bức xạ mặt trời, các phần tử bụi làm ấm lớp khí quyển nơi
chúng cư trú. Không khí ấm được cho rằng là nguyên nhân ngăn chặn sự hình thành
của mây. Thông qua sự ngăn chặn hình mây, mưa, màn bụi được cho là nguyên
nhân mở rộng sa mạc trong tương lai.
13

Hình 1.4. Sol khí tạo bởi con người
1.1.1.3. Sol khí tạo bởi con người
Loại sol khí thứ ba là do các hoạt động của con
người. Phần lớn sol khí tạo bởi con người là do khói bụi
từ cháy các khu rừng nhiệt đới, đốt than và dầu. Sol khí
sulfat tạo bởi con người trong khí quyển đang tăng lên
nhanh chóng kể từ cuộc cách mạng công nghiệp. Với
mức độ sản xuất hiện tại, sol khí sulfat phát thải bởi con
người được cho rằng quá nhiều so với lượng sol khí

và là phẳng gradient nhiệt độ, làm giảm ẩm đối lưu và nước trong khí quyển, làm
giảm lượng mây bao phủ, giảm albedo của mây và làm nóng hệ thống Trái đất trong
tương lai. Xu hướng làm ấm Trái đất bởi “cloud-burning” từ sol khí hấp thụ được
gọi là hiệu ứng “semi-direct”. Tác động gián tiếp của sol khí cũng chia ra làm hai
phần: Tác động gián tiếp loại 1, tăng sol khí dẫn đến tăng tập trung các giọt trong
mây và làm giảm kích cỡ hạt trong mây, và kết quả làm tăng albedo của mây (hiệu
ứng albedo của mây); và hiệu ứng gián tiếp loại 2, như đã nói ở trên sự giảm kích
cỡ hạt mây có xu hướng làm giảm giáng thủy, tăng nước lỏng, bởi vậy tăng thời
gian tồn tại của mây, (hiệu ứng tồn tại mây) và độ dày của mây.
Cả hai hiệu ứng trực tiếp và gián tiếp đều làm giảm lượng bức xạ mặt trời tới
bề mặt Trái đất, trong khi đó trường hợp hiệu ứng “semi-direct” làm tăng nhiệt của
cột khí quyển. Tuy nhiên, hiệu ứng gián tiếp không chắc chắn như hiệu ứng trực
tiếp. Các tác động trực tiếp và gián tiếp đều ảnh hưởng tới giáng thủy. Điều này thể
hiện rõ thông qua hiệu ứng “semi-direct” làm biến đổi đặc tính của mây.
Giảm bức xạ bề mặt bởi tác động trực tiếp và gián tiếp của sol khí cũng
giống như là hiệu chỉnh lại chu trình nước thông qua thay thế tích trữ năng lượng bề
mặt, làm giảm lượng bốc hơi và như vậy sẽ làm chậm lại chu trình nước. Hơn nữa,
sol khí còn tác động đến môi trường theo nhiều cách khác nữa.
Các sol khí gây bất lợi cho sức khỏe của con người và làm giảm tầm nhìn bởi
sự phân tán và hấp thụ bức xạ. Sol khí cũng ảnh hưởng tới sự quang hợp và tỉ lệ hấp
thụ cacbon của hệ sinh thái. Thêm vào nữa sulfat và nitrat là nguyên nhân cơ bản
gây nên mưa axit, ảnh hưởng lớn bởi các khu công nghiệp lớn trên toàn thế giới.
15 Hình 1.5. Những cơ chế bức xạ khác nhau của mây gây ra bởi sol khí.
(Đánh giá lần thứ tư của IPCC)
Những điểm nhỏ màu đen tượng trưng cho các phần tử sol khí, các vòng tròn kích
thước lớn hơn là các hạt mây. Những đường thẳng được cho là thành phần bức xạ tới và thành
phần phản xạ lại bức xạ mặt trời, những đường sóng là bức xạ tới mặt đất. Những vòng tròn màu

hoá học của sol khí (sulphát, nitơrat, bụi, cacbon hữu cơ và cacbon vô cơ) đóng vai
trò rất quan trọng trong việc kích hoạt và lớn lên của các hạt mây.
a. Quan hệ giữa số lượng sol khí với số hạt mây và kích thước hạt mây
Trên một quy mô vùng, các nghiên cứu thực tế đã chỉ ra rằng các đám cháy
rừng ở vịnh Amazon đưa vào khí quyển một lượng sol khí rất lớn, hệ quả là làm
tăng số lượng hạt mây và làm giảm kích thước của các hạt mây này. Công thức
tương quan giữa số lượng sol khí và số lượng hạt mây như sau: Nd ≈ (Na)
b
. Trong
đó Nd là mật độ hạt mây, còn Na là số sol khí, b là tham số thay đổi từ 0.06 -0.48
phụ thuộc vào tính chất của sol khí.
b. Các cơ chế tác động của sol khí tới mây và giáng thủy
Sol khí có thể tương tác với mây và giáng thủy bằng nhiều cách, như là trở
thành nhân ngưng kết hoặc nhân băng hay đóng vai trò là những phần tử hấp thụ
17

Hình 1.6. Tác động của mật độ hạt mây đến
độ phản xạ của mây (albedo)
(Đánh giá lần thứ ba của IPCC)
năng lượng mặt trời và phân bổ lại nguồn năng lượng nhiệt này trong các lớp mây.
Chúng có thể được chia nhỏ thành các quá trình đóng góp khác nhau, như được tóm
tắt trong bảng 1.1 và chỉ ra trong hình 1.7.
* Sol khí tác động tới độ phản xạ của mây và thời gian tồn tại của mây thông
qua quá trình phân bổ của thành phần nước lỏng trong mây (có thể là mây lỏng,
mây băng hay là mây có sự hoà trộn giữa pha lỏng và pha băng).
- Số sol khí càng nhiều  số hạt mây tăng  sẽ

có nhiều hơn các hạt mây để
phản xạ lại bức xạ mặt trời  độ phản xạ của mây tăng.
- Số sol khí càng nhiều  số hạt mây tăng  kích thước hạt mây nhỏ đi 

tại đỉnh
KQ
Cường
độ
Mức
độ
nghiên
cứu
T/động đến
độ phản xạ
của mây
Tất cả
Với cùng một lượng nước lỏng hoặc
băng trong mây, càng nhiều hạt mây
thì độ phản xạ càng lớn
Âm
Trung
bình
Thấp
T/động đến
thời gian
tồn tại của
mây
Tất cả
Các hạt mây nhỏ làm giảm lượng
giáng thuỷ dẫn đến kéo dài thời gian
tồn tại của mây
Âm
Trung
bình

lực
Mây hỗn
hợp (lỏng
và băng)
Các phần tử mây nhỏ đi làm trì
hoãn quá trình đóng băng tạo thành
những đám mây siêu lạnh với nhiệt
độ rất thấp.
Dương
hoặc âm
Trung
bình
Rất
thấp
Bảng 1.1.b. Những tác động gián tiếp khác nhau của sol khí và ảnh hưởng của nó tới bức xạ
sóng ngắn tại bề mặt đất (cột 2 đến cột 4) và tới giáng thuỷ (cột 5 đến cột 7)
Tác động
Thông
lượng
b/xạ tới bề
Cường độ
Mức độ
nghiên cứu
Hiệu
ứng
giáng
Cường
độ
Mức
độ

lực
Dương
hoặc âm
Trung bình Rất thấp
Dương
hoặc âm
Trung
bình
Rất
thấp
21

Hình 1.7. Mô tả những tác động khác nhau của sol khí đã được trình bày trong bảng 1.1
(Đánh giá lần thứ tư của IPCC)

22

c. Tác động của sol khí tới mây nước. Các hạt nhân ngưng kết kích thước lớn
Từ trạng thái hơi nước, nhân ngưng kết đồng nhất sẽ giúp tạo thành những
hạt nước lỏng, tuy nhiên trong điều kiện của khí quyển có nhiều các sol khí thì điều
này khó có thể xảy ra. Thay vào đó là quá trình hơi nước đọng lại trên các phần tử
sol khí – các nhân ngưng kết bất đồng nhất.
Việc con người làm gia tăng số lượng sol khí sẽ làm thay đổi tính chất bức
xạ của mây và do đó làm thay đổi khí hậu. Nhiều nhân ngưng kết hơn sẽ gia tăng số
hạt mây có kích thước nhỏ hơn, từ đó làm tăng độ phản xạ của mây. Điều này đã
được đề cập đến đầu tiên bởi Twomey vào năm 1974. Sau đó, vào năm 1989
Albrecht đã chứng minh rằng sự hình thành giáng thuỷ bị giảm đi, sẽ dẫn tới thời
gian tồn tại của mây được kéo dài. Cả hai tác động này đều dẫn tới sự lạnh đi của bề
mặt trái đất.
Các phần tử sol khí thô hay là nhân ngưng kết lớn như muối biển, bụi có tác

trong biến đổi khí hậu.
1.1.2.3. Tác động của sol khí lên Albedo bề mặt và năng lượng bức xạ mặt trời
tới bề mặt trái đất
Sol khí làm thay đổi những thuộc tính vật lý của bề mặt và từ đó làm biến đổi
khí hậu bằng cách:
- Tác động đến năng lượng bức xạ.
- Làm thay đổi thông lượng hiển nhiệt và ẩn nhiệt truyền từ khí quyển.
Bằng sự gia tăng độ dày quang học của mây, sol khí và các hợp chất do con
người gây ra đã góp phần làm suy giảm bức xạ mặt trời trên bề mặt trái đất. Trên
khắp nước Đức, sự hấp thụ và tán xạ của các sol khí giảm đi đã làm giảm tỉ lệ bức
xạ mặt trời trực xạ/tán xạ.
24

Ở vùng nhiệt đới Ấn Độ Dương, Sol khí gián tiếp làm năng lượng bức xạ
mặt trời tới đỉnh khí quyển thay đổi -5W/m
2
còn tại bề mặt là -6W/m
2
. Mô hình khí
hậu toàn cầu tính toán rằng: trung bình, bức xạ sóng ngắn trên bề mặt suy giảm
khoảng từ -1.3 đến -3.3W/m
2
. Sự thay đổi dòng bức xạ ở đỉnh khí quyển lớn hơn do
có một vài sol khí đóng vai trò giống như carbon đen hấp thụ bức xạ mặt trời trong
khí quyển. Phần lớn các mô hình đều dự báo sự suy giảm xảy ra trên đất liền nhiều
hơn trên biển.
Thêm vào đó sol khí còn góp phần tạo ra khí nhà kính. Ở Nam Á, các sol khí
có thể đã đóng góp 50% sự đốt nóng bề mặt do sự gia tăng khí nhà kính toàn cầu.
Quá trình này còn làm thay đổi trên một quy mô rộng lớn những thuộc tính của lớp
thực vật phủ bao phủ trên bề mặt, từ đó làm thay đổi các thuộc tính vật lý của bề

phản hồi hơi nước. Do sol khí làm mát bề mặt Trái Đất và làm ấm lớp sol khí nên
mức độ giảm nhiệt độ sẽ giảm trên toàn cầu và gây nhiễu tín hiệu phản hồi hơi
nước. Độ ổn định của khí quyển tại một khu vực nào đó phụ thuộc mạnh mẽ vào vĩ
độ có sự đốt nóng của cacbon đen.
Sự hấp thụ bức xạ mặt trời gây bởi các sol khí làm thay đổi lượng mây. Tác
động bán trực tiếp (semi-direct) đã được mô phỏng bởi mô hình phân giải mây có
độ phân giải cao và mô hình hoàn lưu chung khí quyển (GCMs). Sự đốt nóng sol
khí xảy ra bên trong lớp mây làm giảm các kết cấu mây riêng lẻ, trong khi đó nếu sự
đốt nóng này xảy ra bên trên lớp mây sẽ làm tăng các phần tử mây. Với GCMs, tác
động bán trực tiếp có thể cũng kết luận sự thay đổi của mây là do ảnh hưởng của
hoàn lưu và/hoặc do hiệu ứng Albedo bề mặt. Feigold (2005) đã chứng minh chỉ có
một giải thích đơn giản nhất cho sự suy giảm lượng bức xạ, nhiệt và tiềm nhiệt bề
mặt là sự giảm mây do các sol khí hấp thụ bức xạ.
b. Tác động lên hoàn lưu quy mô lớn
Nhiều nghiên cứu với GCMs cho thấy lớp xáo trộn đại dương cũng chịu tác
động gián tiếp của sol khí, hoặc có sự kết hợp giữa tác động gián tiếp và trực tiếp
của sol khí. Tất cả những điều trên kết hợp với những mô phỏng thời gian gần đây

Trích đoạn Tác động gián tiếp loại 1 Tác động gián tiếp loại 2 THU THẬP SỐ LIỆU ĐẦU VÀO CHO MÔ HÌNH RegCM LỰA CHỌN MIỀN TÍNH Cán cân thuần bức xạ (Radiation Forcing)
Nhờ tải bản gốc

Tài liệu, ebook tham khảo khác

Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status