Bài toán đẳng chu – bất đẳng thức đẳng chu trong mặt phẳng sơ cấp - pdf 16

Download miễn phí Khóa luận Bài toán đẳng chu – bất đẳng thức đẳng chu trong mặt phẳng sơ cấp



MỤC LỤC
MỤC LỤC. 1
LỜI NÓI ĐẦU . 2
CHƯƠNG I: BẤT ĐẲNG THỨC ĐẲNG CHU TRONG MẶT PHẲNG
SƠCẤP . 3
1. Bài toán đẳng chu tổng quát trong mặt phẳng . 3
1.1. Dạng phát biểu gốc. 3
1.2. Dạng phát biểu tương đương. 3
1.3. Chứng minh sựtương đương của hai phát biểu trên. 4
2. Định lý ( Bất đẳng thức đẳng chu tổng quát trong mặt phẳng). 4
3. Vài phép chứng minh bất đẳng thức đẳng chu tổng quát trong mặt phẳng . 5
3.1. Phép chứng minh sơcấp của Steiner . 5
3.2. Phép chứng minh cao cấp . 8
CHƯƠNG II: MỘT SỐBÀI TOÁN ĐẲNG CHU TRONG HÌNH HỌC PHẲNG
SƠCẤP.12
1. Các bài toán vềdiện tích lớn nhất.12
1.1. Loại gốc .12
1.2. Loại mởrộng.22
2. Các bài toán vềchu vi nhỏnhất .39
2.1 Loại gốc .39
2.2 Loại mởrộng.43
PHẦN KẾT LUẬN . 60
TÀI LIỆU THAM KHẢO. 61



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

ông là hình bình hành.
r
r
r
B
C'
B' K
E
H
I
A D
C
Hình 3.5
Không mất tính tổng quát, ta giả sử các tia AB và CD cắt nhau tại E.
Kẻ đường thẳng ' ' // BCB C sao cho ' 'B C tiếp xúc đường tròn ( ) , O r nội
tiếp AED∆ ( B’ và C’ lần lượt nằm trên các cạnh AE và DE).
Dễ thấy:
( )EB'C' EB'OC' OB'C' OB'E OC'E OB'C' 1 ' ' ' '2S S S S S S EB EC B C r= − = + − = + −
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 20
EB'C' S qr= ( với ( )1 ' ' ' '2q EB EC B C= + − ) (3.13)
Đặt 2 2EBC EB'C' EBC . '
EBk S k S S k qr
EB
= ⇒ = ⇒ =
Gọi 2p là chu vi AED∆ AED S pr⇒ = ; (3.14)
2ABCD AED EBC S S S pr k qr⇒ = − = −
Ngoài ra: ( )ABCD AED 2p p EB EC BC p EB EC BC= − − + = − + − (3.15)
Ta lại có: ' ' // BCB C =
' ' ' ' ' ' ' '
EB EC BC EB EC BCk
EB EC B C EB EC B C
+ −⇒ = = = + −
= 2
2
EB EC BCk EB EC BC kq
q
+ −⇒ ⇒ + − = (3.16)
Từ (3.15), (3.16) suy ra ( )ABCD 2 2 2p p kq p kq= − = −
( ) ( )
2
ABCD
2 2
ABCD
4
S pr k qr
p p kq
−⇒ = − (3.17)
Tương tự: ( ) ( )
AB'C'D
2 2
AB'C'D
4
S pr qr
p p q
−= − ( ứng với k = 1) (3.18)
Ta chứng minh thêm: ( ) ( )
2
2 2 4 4
pr k qr pr qr
p kq p q
− −≤− − (3.19)
Dễ thấy các bất đẳng thức sau là tương đương:
(3.19)
( )
( )
2
2
1
p k q
p qp kq
−⇔ ≤ −− ( vì 0p q p q> ⇒ − > )
( )( ) ( )22 p k q p q p kq⇔ − − ≤ −
( ) ( )22 2 1 0 1 0k k k⇔ − + ≥ ⇔ − ≥ (đúng).
Vậy (3.19) được chứng minh.
Dấu bằng xảy ra trong (3.19) khi và chỉ khi k = 1.
Từ (3.17), (3.18), (3.19) ta có: ( ) ( ) ( )
ABCD AB'C'D
2 2
ABCD AB'C'D
4
S S r
p qp p
≤ = −
( ) ( )
MNPQ 2
MNPQ 02
0
4 4
S r rS P
P p q p q
⇒ ≤ ⇒ ≤− − (3.20)
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 21
Mà : ' ' cot cot
2 2
B C r β γ⎛ ⎞= +⎜ ⎟⎝ ⎠ , ' cot cot2 2C D r
γ λ⎛ ⎞= +⎜ ⎟⎝ ⎠
DA cot cot
2 2
r λ α⎛ ⎞= +⎜ ⎟⎝ ⎠ , ' cot cot2 2AB r
α β⎛ ⎞= +⎜ ⎟⎝ ⎠
Nên ' ' ' ' 2 cot cot cot cot
2 2 2 2
B C C D DA AB r α β γ λ⎛ ⎞+ + + = + + +⎜ ⎟⎝ ⎠ (3.21)
Ngoài ra: ( ) ( )2 2 ' ' ' 'p q AE ED AD EB EC B C− = + + − + −
( ) ( ) ( ) = ' ' ' 'AE EB ED EC AD B C− + − + +
( ) 2 AB' + C'D + AD + B'C'p q⇒ − = (3.22)
Từ (3.21), (3.22) suy ra: 1
cot cot cot cot
2 2 2 2
r
p q α β γ λ=− + + +
(3.23)
Từ (3.20), (3.23) suy ra:
2
0
MNPQS
cot cot cot cot
2 2 2 2
P
α β γ λ≤ + + +
(3.24)
Dấu bằng xảy ra trong (3.24) khi và chỉ khi:
k = 1 ⇔ ABCD là tứ giác ngoại tiếp ⇔ MNPQ là tứ giác ngoại tiếp.
Từ 2 trường hợp đã xét ta có kết luận như sau:
Kết luận: Trong số tất cả các tứ giác lồi với các số đo góc ở các đỉnh cho
trước và chu vi cho trước thì tứ giác ngoại tiếp có diện tích lớn nhất.
Bài toán 10: Chứng minh rằng trong tất cả các đa giác n cạnh với các cạnh
đã cho, đa giác nội tiếp trong đường tròn có diện tích lớn nhất.
Giải
M' M
M"
Hình 3.6
Giả sử M là đa giác bất kì với các cạnh đã cho và M’ là đa giác như vậy nội
tiếp trong đường tròn.
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 22
a
b c
Trên các cạnh của M ta dựng các mảnh tương ứng với mảnh mà đường tròn bị
cắt ra bởi các cạnh của M’. Khi đó cùng với M các mảnh ghép lại tạo ra M” có
chu vi bằng chu vi đường tròn ngoại tiếp M’.
Theo dạng phát biểu gốc thì đường tròn ngoại tiếp M’ có diện tích lớn hơn
diện tích của M”. Sau khi ta bỏ đi các mảnh chung ở hai hình thì diện tích của
M’ lớn hơn diện tích của M.
1.2. LOẠI MỞ RỘNG
Bài toán 11: Trong tất cả các tam giác nội tiếp đường tròn ( ), O R cho trước,
tam giác nào có diện tích lớn nhất
Giải
Hình 3.7
Gọi SABC là diện tích tam giác ABC nội tiếp đường tròn ( ), O R , ta có:
2 2
ABC
2 2
2 sin .sin .sin sin .[cos( ) cos( )]
4
sin .[cos( ) cos ] sin .(1 cos )
abcS R A B C R A B C B C
R
R A B C A R A A
= = = − − +
= − + ≤ +
2
ABC sin .(1 cos )S R A A⇒ ≤ + (3.25)
Ngoài ra:
2 2sin .(1 cos ) (sin ) (1 cos )A A A A+ = +
2 2 3
2
3
(1 cos )(1 cos ) (1 cos ) (1 cos )
1 1 (3 3cos ) 3(1 cos ) 3 3 (3 3cos )(1 cos )
3 3 4 4
A A A A
A AA A
= − + = + −
− + +⎡ ⎤= − + ≤ =⎢ ⎥⎣ ⎦
( ) 22 3 3 sin . 1 cos
4
RR A A⇒ + ≤ (3.26)
Từ (3.25), (3.26) suy ra:
23 3S
4ABC
R≤ (3.27)
Dấu bằng xảy ra trong (3.27) khi và chỉ khi: (3.25) và (3.26) cùng xảy ra dấu
bằng
O
A
B C
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 23
( )
( )cos 1
cos 1
13 3cos 1 cos cos
2
0
B C
B CB C
A A A
A
π π
π
− =⎧⎪− < ∠ −∠ <⎪− =⎧⎪ ⎪⇔ ⇔⎨ ⎨− = + =⎪⎩ ⎪⎪ < ∠ <⎪⎩
0 ABC60
B C
A
∠ = ∠⎧⇔ ⇔ ∆⎨∠ =⎩
đều
Vậy ( ) 23 3max =
4ABC
RS ; đạt được khi và chỉ khi ABC∆ đều.
Kết luận: Trong tất cả các tam giác nội tiếp đường tròn ( ), O R cho trước,
tam giác đều có diện tích lớn nhất.
Bài toán 12: Trong tất cả các hình chữ nhật nội tiếp trong đường tròn ( );O R
cho trước, tìm hình chữ nhật có diện tích lớn nhất.
Giải
H
CB
O
A D
Hình 3.8
Gọi ABCD là hình chữ nhật nội tiếp trong đường tròn ( );O R
Suy ra 0 90DAB∠ = và ABCD ABD 2S S=
Từ 0 90DAB∠ = ⇒ DB là đường kính của đường tròn ( );O R ⇒ 2DB R=
Vẽ AH BD⊥ ( )H BD∈
Vì HOAH ⊥ nên AH AO R≤ =
Do đó 2ABCD ABD
1 2 2. . .2 2
2
S S AH BD R R R= = ≤ = (3.28)
Đẳng thức xảy ra trong (3.28) khi và chỉ khi H O≡ ⇔ ABCD là hình vuông
Vậy ( ) 2ABCDmax = 2S R ; đạt được khi và chỉ khi ABCD là hình vuông
Kết luận: Trong tất cả các hình chữ nhật nội tiếp trong đường tròn cho
trước thì hình vuông là hình có diện tích lớn nhất.
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 24
Bài toán 13: Trong tất cả các tứ giác có hai đường chéo vuông góc nội tiếp
trong đường tròn ( );O R cho trước, hãy tìm tứ giác có diện tích lớn nhất.
Giải
C
A
O
D
B
Hình 3.9
Xét tứ giác ABCD bất kì có hai đường chéo AC, BD vuông góc nội tiếp trong
đường tròn ( );O R cho trước.
Do AC, BD là các dây cung của đường tròn ( );O R nên 2AC R≤ và 2BD R≤
Mà AC BD⊥ (giả thiết)
Do đó 2ABCD
1 1 . 2 .2 2
2 2
S AC BD R R R= ≤ = (không đổi) (3.29)
Đẳng thức xảy ra trong (3.29) khi và chỉ khi 2AC BD R= = ⇔ ABCD là
hình vuông
Vậy ( ) 2ABCDmax = 2S R ; đạt được khi và chỉ khi ABCD là hình vuông.
Kết luận:Trong tất cả các tứ giác có 2 đường chéo vuông góc nội tiếp
trong đường tròn ( );O R cho trước thì hình vuông là hình có diện tích lớn
nhất.
Bài toán 14: Trong tất cả các tứ giác nội tiếp trong đường tròn ( );O R cho
trước, hãy tìm tứ giác có diện tích lớn nhất.
Giải
I
H
K
O
A
D
C
B
Hình 3.10
Khoá luận tốt nghiệp GVHD: PGS.TS Lê Anh Vũ
SVTH: Lê Thanh Bình Trang: 25
Vẽ , AH BD CK BD⊥ ⊥ , ( ),H BD K BD∈ ∈
Gọi I AC BD= ∩
Vì AH HI⊥ và CK KI⊥ nên AH AI≤ và CK CI≤
⇒ AH CK AI CI AC+ ≤ + =
ABCD ABD BCD S S S= +
( )1 1 1 1 . . .
2 2 2 2
AH BD CK BD BD AH CK BD AC= + = + ≤
2AC R≤ , 2BD R≤ (đường kính là dây cung lớn nhất của đường tròn)
Do đó
( ) 2ABCD 1 1 1 . 2 .2 22 2 2S BD AH CK BD AC R R R= + ≤ ≤ = (3.30)
Đẳng thức xảy ra trong (3.30) khi và chỉ khi H I K≡ ≡ và AC, BD là các
đường kính của ( );O R
⇔ ABCD là hình vuông
Vậy ( ) 2ABCDmax = 2S R ; đạt được khi và chỉ khi ABCD là hình vuông.
Kết luận: Trong tất cả các tứ giác nội tiếp trong đường tròn ( );O R cho
trước thì hình vuông là hình có diện tích lớn nhất.
Bài toán 15: Trong tất cả các tam giác vuông có chung cạnh huyền, hãy tìm
tam giác có diện tích lớn nhất.
Giải
2k
O
A B
M
H
Hình 3.11
X
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status