Phương pháp lặp Banach cho bài toán bất đẳng thức biến phân - pdf 17

Download miễn phí Luận văn Phương pháp lặp Banach cho bài toán bất đẳng thức biến phân



Trangphụbìa
Mụclục 2
Lờicảmơn 3
Mộtsốkýhiệuvàchữviếttắt 4
Lờinóiđầu 5
Chương1.BàitoánBấtđẳngthứcbiếnphân
1.1. Mộtsốkháiniệmcơbản 7
1.2. Phátbiểubàitoánvàvídụ 10
1.3. SựtồntạinghiệmcủabàitoánVI 18
Chương2.PhươngpháplặpBanachgiảibàitoán(VI)đơnđiệumạnh
2.1. Tínhkhônggiãncủaánhxạnghiệm 23
2.2. Môtảthuậttoánvàsựhộitụ 27
Chương3.PhươngpháplặpBanachgiảibàitoánđồngbức
3.1. Tínhkhônggiãncủaánhxạnghiệm 30
3.2. Môtảthuậttoánvàsựhộitụ 35
3.3. Kếtquảtínhtoánthửnghiệm
3.3.1.Môhìnhcânbằngbánđộcquyền 38
3.3.2.Kếtquảtínhtoánthửnghiệm 43
Tàiliệuthamkhảo 44



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

.
x0 ∈ [a, b], suy ra có 3 trường hợp xảy ra:
TH1: Nếu x0 ∈ (a, b), theo định lý Fermat, ta có f ′(x0) = 0.
TH2: Nếu x0 = a, f ′(x0) = lim
x→x0+
f(x)−f(x0)
x−x0 ≥ 0.
TH2: Nếu x0 = b, f ′(x0) = lim
x→x0

f(x)−f(x0)
x−x0 ≤ 0.
Kết hợp lại, ta có thể viết: x0 là nghiệm của bài toán
f ′(x0).(x− x0) ≥ 0 ∀x ∈ C.
Như vậy x0 là nghiệm của bài toán bất đẳng thức biến phân VI với F = f ′ trên
C = [a, b].
Bây giờ, ta xét ví dụ tổng quát hơn
Ví dụ 1.4. Cho f(x) là một hàm thực khả vi trên tập mở chứa C ⊆ IRn. Tìm
x0 ∈ C sao cho
f(x0) = min
x∈C
f(x).
Mệnh đề 1.1. Nếu x0 là nghiệm của bài toán trên, thì x0 là nghiệm của bài
toán bất đẳng thức biến phân VI với F (x) := ∇f(x).
Chứng minh. Với mọi y ∈ C , do C lồi nên (1− t)x0 + ty ∈ C ∀t ∈ [0, 1].
Đặt
ϕ(t) := f(x0 + t(y − x0)).
Giả thiết cho x0 là nghiệm hay t = 0 là nghiệm của ϕ(t) trên [0, 1]. Theo Ví
dụ 1.3, ta có
ϕ′(t0).(t− t0) ≥ 0 ∀t ∈ [0, 1].
Số húa bởi Trung tõm Học liệu – Đại học Thỏi Nguyờn
www.VNMATH.com
13
Hay
〈∇f(x0), x− x0〉 ≥ 0 ∀x ∈ C.
2
Mệnh đề 1.2. Cho f là hàm lồi khả vi trên tập lồi C ⊆ Rn. Khi đó, x0 ∈ C là
nghiệm của bài toán
min
x∈C
f(x)
khi và chỉ khi x0 là nghiệm của bài toán bất đẳng thức VI với F (x) := ∇f(x).
Chứng minh. Điều kiện cần được suy ra từ Mệnh đề 1.1. Do f là hàm lồi
trên C , nên
f(x)− f(x0) ≥ 〈∇f(x0), x− x0〉 ∀x ∈ C.
Giả thiết cho
〈∇f(x0), x− x0〉 ≥ 0 ∀x ∈ C.
Do đó
f(x) ≥ f(x0) ∀x ∈ C.
Hay x0 là nghiệm của bài toán
min
x∈C
f(x).
2
Ví dụ 1.5. (Bài toán bù, ký hiệu CP)
Cho C = Rn+ và F : C → R
n
. Bài toán được đặt ra là: Tìm điểm x0 ∈ C
sao cho
F (x0) ∈ C, 〈F (x0), x0〉 = 0.
Mệnh đề 1.3. x0 ∈ C = Rn+ là nghiệm của bài toán bù CP khi và chỉ khi x
0
là nghiệm của bài toán VI hay
〈F (x0), x− x0〉 ≥ 0 ∀x ∈ C.
Số húa bởi Trung tõm Học liệu – Đại học Thỏi Nguyờn
www.VNMATH.com
14
Chứng minh. (⇒) Giả sử x0 là nghiệm của bài toán bù CP hay
F (x0) ∈ C, 〈F (x0), x0〉 = 0.
Khi đó
〈F (x0), x− x0〉 = 〈F (x0), x〉 − 〈F (x0), x0〉 = 〈F (x0), x〉 ≥ 0 ∀x ∈ C.
(⇐) Giả sử x0 là nghiệm của bài toán bất đẳng thức biến phân VI hay
x0 ∈ C : 〈F (x0), x− x0〉 ≥ 0 ∀x ∈ C.
Gọi ei = (0, 0, ..., 0, 1, 0, ...0)
T
(1 ở vị trí thứ i). Khi đó, x1 = x0 + ei ∈ C .
Thay x1 vào bất đẳng thức biến phân, ta có
〈F (x0), x1 − x0〉 ≥ 0.
Hay
〈F (x0), ei〉 ≥ 0 ∀i = 1, 2, ...n.
Vậy F (x0) ∈ C .
Từ 0 ∈ C và
〈F (x0), x− x0〉 ≥ 0 ∀x ∈ C.
suy ra
−〈F (x0), x0〉 ≥ 0.
Do đó
〈F (x0), x0〉 = 0.
2
Dưới đây ta xét hai ví dụ thực tế của bài toán VI.
Ví dụ 1.6. Bài toán cân bằng mạng giao thông
Xét một mạng giao thông được cho bởi một mạng luồng hữu hạn. Gọi
•N : tập hợp các nút của mạng.
•A: là tập hợp các cạnh (mỗi cạnh được gọi là một đoạn đường).
Số húa bởi Trung tõm Học liệu – Đại học Thỏi Nguyờn
www.VNMATH.com
15
Giả sử O ⊆ N , D ⊆ N sao cho O ∩ D = ∅. Mỗi phần tử của O được gọi là
điểm nguồn, còn mỗi phần tử của D được gọi là điểm đích. Mỗi điểm nguồn
và điểm đích được nối với nhau bởi một tập hợp liên tiếp các cạnh (được gọi
là một tuyến đường). Ký hiệu:
•f ia là mật độ giao thông của phương tiện i trên đoạn đường a ∈ A. Đặt f là
véc tơ có các thành phần là f ia với i ∈ I và a ∈ A (I là tập hợp các phương
tiện giao thông.
•cia là chi phí khi sử dụng phương tiện giao thông i trên đoạn đường A. Đặt c
là véc tơ có các thành phần là cia với i ∈ I, a ∈ A.
•diw là nhu cầu sử dụng loại phương tiện i ∈ I trên tuyến đường w = (O,D)
với O ∈ O, D ∈ D.
Giả sử rằng chi phí giao thông phụ thuộc vào lưu lượng, tức là c = c(f) là
một hàm của f .
•λiw là mức độ chi phí trên tuyến đường w của phương tiện giao thông i.
•xiw là mật độ giao thông của phương tiện i ∈ I trên tuyến w ∈ O ìD.
Giả sử trong mạng trên, phương trình cân bằng sau được thoả mãn
diw =

p∈Pw
xip ∀i ∈ I, w ∈ O ìD, (1.2)
trong đó, Pw ký hiệu tập hợp các tuyến đường của w = (O,D) (nối điểm nguồn
O và điểm đích D). Theo phương trình (2.18), thì nhu cầu sử dụng loại phương
tiện i trên tuyến đường w bằng đúng tổng mật độ giao thông của phương tiện
đó trên mọi tuyến đường nối điểm nguồn và điểm đích của tuyến đường đó. Khi
đó ta có
f ia =

p∈Pw
xipδap ∀i ∈ I, w ∈ O ìD, (1.3)
trong đó
δap :=


1 nếu a ∈ p,
0 nếu a /∈ p.
Số húa bởi Trung tõm Học liệu – Đại học Thỏi Nguyờn
www.VNMATH.com
16
Với mỗi tuyến đường p nối một điểm nguồn và một điểm đích, đặt
cip =

a∈A
ciaδap. (1.4)
Như vậy, cip là một chi phí khi sử dụng phương tiện i trên tuyến đường p. Đặt
d là véc tơ có các thành phần là diw (i ∈ I, w ∈ O ìD) và đặt f là véc tơ có
các thành phần là dia (i ∈ I, a ∈ O ìD). Một cặp (d
∗, f ∗) thoả mãn các điều
kiện (2.18) và (2.21) được gọi là điểm cân bằng của mạng giao thông nếu
cip(f
∗) =


λiw(d
∗) khi xip > 0,
> λiw(d
∗) khi xip = 0,
với mỗi i ∈ I và mỗi tuyến đường p. Theo định nghĩa này, tại điểm cân bằng
đối với mọi loại phương tiện giao thông và mọi tuyến đường, chi phí sẽ thấp
nhất khi có lưu lượng giao thông trên tuyến đó. Trái lại, chi phí sẽ không phải
thấp nhất.
Đặt
K = {(f, d) | ∃ x ≥ 0 sao cho (2.18) và (2.21) đúng}.
Khi đó, ta có định lý sau.
Định lý 1.1. Một cặp véc tơ (f ∗, d∗) ∈ K là một điểm cân bằng của mạng giao
thông khi và chỉ khi nó là nghiệm của bất đẳng thức biến phân sau:
Tìm (f ∗, d∗) ∈ K sao cho 〈
(
c(f ∗)), λ(d∗)
)
, (f, d)−(f ∗, d∗)〉 ≥ 0 ∀(f, d) ∈ K.
Ví dụ 1.7. Bài toán kinh tế bán độc quyền
Giả sử có n công ty cùng sản xuất một loại sản phẩm và lợi nhuận pi của
mỗi công ty i phụ thuộc vào tổng số lượng sản phẩm của tất cả các công ty
σ :=
∑n
i=1 xi. Ký hiệu hi(xi) là chi phí của công ty i khi sản xuất ra lượng
hàng hoá xi. Giả sử rằng lợi nhuận của công ty i được cho bởi
fi(x1, ..., xn) = xipi(
n∑
i=1
xi)− hi(xi) (i = 1, ..., n), (1.5)
Số húa bởi Trung tõm Học liệu – Đại học Thỏi Nguyờn
www.VNMATH.com
17
trong đó p(
∑n
j=1 xj) là giá của một đơn vị sản phẩm, phụ thuộc vào tổng sản
phẩm, còn hàm chi phí của mỗi công ty i chỉ phụ thuộc vào mức độ sản xuất
của công ty đó.
Đặt Ui ⊂ IR, (i = 1, ..., n) là tập chiến lược của công ty i. Lẽ dĩ nhiên,
mỗi công ty cần xác định cho mình một mức độ sản xuất để đạt được lợi nhuận
cao nhất. Tuy nhiên, trong trường hợp tổng quát, việc tất cả các công ty đều có
lợi nhuận cực đại là khó có thể được. Vì vậy người ta dùng đến khái niệm cân
bằng:
Một điểm x∗ = (x∗1, ..., x

n) ∈ U := U1 ì ... ì Un được gọi là điểm cân
bằng Nash nếu
fi(x

1, ..., x

i−1, yi, x

i+1, ..., x

n) 6 fi(x

1, ..., x

n) ∀yi ∈ Ui, ∀i = 1, ..., n.
Trong mô hình cân bằng Cournot cổ điển, hàm chi phí và hàm lợi nhuận của
mỗi công ty là affine có dạng
pi(σ) ≡ p(σ) = α0 − βσ, α0 ≥ 0, β > 0, với σ =
∑n
i=1 xi,
hi(xi) = àixi + ξi, ài ≥ 0, ξi ≥ 0 (i = 1, ..., n).
Ta đặt
A =


β 0 0 ... 0
0 β 0 ... 0
... ... ... ... ...
0 0 0 0 β

 , A˜ =


0 β β ... β
β 0 β ... β
... ... ... ... ...
β β β ... 0
...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status