Tài liệu Báo cáo tốt nghiệp: Nghiên cứu cấu trúc và tính chất điện hóa của vật liệu oxit mangan được điều chế bằng phương pháp khử doc - Pdf 86

TRƯỜNG ………………….
KHOA……………………….
----------
Báo cáo tốt nghiệp
Đề tài:

Nghiên cứu cấu trúc và tính chất điện hóa của vật
liệu oxit mangan được điều chế bằng phương pháp khử
MỤC LỤC
Mở đầu..................................................................................................................2
Chương 1 - Tổng quan.........................................................................................3
Giới thiệu chung về oxit mangan.........................................................................3
Chương 2 - Thực nghiệm...................................................................................19
Hoá chất và thiết bị............................................................................................19
Chương 3 - Kết quả và thảo luận......................................................................23
3.1. Cấu trúc của vật liệu điều chế được..........................................................23
Kết Luận..............................................................................................................44
Tài liệu tham khảo..............................................................................................45
Mở đầu
Nhu cầu năng lượng trên thế giới càng ngày càng cao cùng với sự phát triển
của khoa học-kĩ thuật, vì vậy đòi hỏi các nhà khoa học không ngừng nâng cao chất
lượng các nguồn năng lượng thay thế, đặc biệt là các loại pin và ăcqui. Oxit
mangan là vật liệu có dung lượng lớn nên được sử dụng phổ biến để chế tạo điện
cực trong các nguồn điện. Hiện nay, xu thế trên thế giới là chế tạo vật liệu nano oxit
mangan có dung lượng rất lớn (siêu dung lượng ). Siêu dung lượng này xuất hiện
do sự tồn tại của loại tụ điện điện hóa (giả tụ điện ) trong quá trình hoạt động của
ăcqui và là nơi tích trữ năng lượng trong quá trình nạp điện. Vật liệu có kích thước
càng nhỏ thì diện tích bề mặt càng lớn và do đó dung lượng càng lớn [5], [26].
Có nhiều phương pháp tổng hợp oxit mangan như: Phương pháp điện phân,
phương pháp hóa học, phương pháp thủy nhiệt…Theo nhiều nghiên cứu gần đây
thì tổng hợp vật liệu oxit mangan bằng con đường thủy nhiệt cho sản phẩm kết tinh

3
O
4
, Mn
2
O
3
, MnO
2
… Trong tự nhiên khoáng vật chính của
mangan là hausmannite (Mn
3
O
4
), pirolusit (MnO
2
) và manganite (MnOOH) [3].
Các oxit mangan có rất nhiều ứng dụng trong thực tế, một trong số đó là sử dụng
chế tạo cực dương trong pin khô. Sự hoạt động của pin dựa trên sự chuyển hoá lẫn
nhau giữa các dạng oxit của mangan. Vì vậy tuỳ thuộc vào loại oxit và thành phần
của chúng mà khả năng hoạt động của điện cực khác nhau.
1.1.1. Mangan đioxit (MnO
2
) [7]
Mangan đioxit là một trong những hợp chất vô cơ quan trọng, có nhiều ứng
dụng trong thực tế. Mangan đioxit có thành phần hóa học không hợp thức. Trong
hợp chất mangan đioxit chứa một lượng lớn Mn
4+
dưới dạng MnO
2

,

γ-MnO
2
, α-MnO
2
, ε-MnO
2

Bảng 1 cho thấy một số dạng cơ bản của tinh thể MnO
2
.
 β-MnO
2
β-MnO
2
hoặc pyrolusite là những tinh thể có cấu trúc đơn giản nhất trong
nhóm hợp chất có cấu trúc đường hầm. Các nguyên tử mangan chiếm một nửa lỗ
trống bát diện được tạo thành do 6 nguyên tử oxi xếp chặt khít với nhau
Bảng 1: Cấu trúc tinh thể của MnO
2
Hợp chất Công
thức
Mạng
tinh thể
Hằng số mạng
Kích
thước
đường
hầm

x
OH
x

Hexagonal 228.3 278.3 443.7 90 90 90 [1x1]/[1x2]
α-MnO
2
MnO
2
Tetragonal 90 90 90 [2x2]
giống như tinh thể rutile. Những đơn vị khuyết tật MnO
6
tạo ra chuỗi cạnh bát diện
mở dọc theo trục tinh thể c-axis. Các chuỗi liên kết ngang với các chuỗi bên cạnh
hình thành góc chung. Các lỗ trống này là quá nhỏ để các ion lớn có thể xâm nhập
vào, nhưng đủ lớn cho ion H
+
và ion Li
+
. β-MnO
2
có thể chấp nhận thành phần
đúng là MnO
2
.
Hình 1. Cấu trúc tinh thể β-MnO
2
 Ramsdellite
Cấu trúc tinh thể của ramsdellite tương tự cấu trúc của pyrolusite, chỉ khác
là các chuỗi đơn bát diện trong tinh thể β-MnO

được cấu trúc của γ-MnO
2
. De Wolff là người đầu tiên đưa ra cấu trúc hợp lí nhất
của γ-MnO
2
. Theo De Wolff, tinh thể γ-MnO
2
là sự kết hợp giữa β-MnO
2
([1 x 1])
và ramsdellitte ([1 x 2 ]). Tuỳ vào mức độ đóng góp của hai thành phần này vào cấu
trúc mà giản đồ XRD của γ-MnO
2
có sự khác nhau. γ-MnO
2
có cấu trúc đường hầm
[1 x 1] và [1 x 2], thậm chí trong tinh thể γ-MnO
2
còn tồn tại đường hầm lớn [2 x
2]. Một điều quan trọng là trong cấu trúc của β-MnO
2
và ramsdellitte đều có mặt
các ion oxi sắp xếp trên mặt phẳng ngang, nhưng với γ-MnO
2
thì chỉ có mặt oxi xếp
ở đỉnh hình chóp trong cấu trúc của ramsdellitte.
Hình 3. Cấu trúc tinh thể của γ-MnO
2
γ-MnO
2

4+
kết hợp với 4 proton để hình thành anion OH
-
tại vị trí của
ion O
2-
.
• Một phần y của ion Mn
4+
được thay thế bằng ion Mn
3+
. Với mỗi ion Mn
3+

hơn một ion OH
-
trong mạng thay thế một anion O
2-

• Trong cấu trúc tinh thể thấy xuất hiện nhiều loại ion: Mn
4+
, Mn
3+
, O
2-
, OH
-

các lỗ trống.
• Tính dẫn điện tăng lên khi các electron và các ion dịch chuyển trong đường hầm

bao gồm các đường hầm có cấu trúc [ 2 x 2] và [ 1 x
1] mở rộng dọc theo trục tinh thể ngắn c-axis của một đơn vị tứ diện. Những đường
hầm này được hình thành từ hai chuỗi bát diện MnO
6
có chung cạnh với nhau. Trái
với β-MnO
2
, ramsdellite, và γ-MnO
2
, cấu trúc đường hầm lớn [ 2 x 2 ] của α-MnO
2
rất phù hợp cho sự xâm nhập của các ion lạ như K
+
, Na
+
, NH
4
+
hoặc nước.
1.1.2. Dạng khử của oxit mangan [7]
Bảng 2: Cấu trúc tinh thể một số dạng khử của oxit mangan
Hợp chất Công thức Mạng tinh thể Hằng số mạng
a (pm) b
(pm)
c
(pm)
α
0
β
0

90
90
90
90
90
90
90
 Manganite (γ – MnOOH)
Manganite có cấu trúc tinh thể tương tự cấu trúc pyrolusite khi có thêm một
proton. Cấu trúc của nó gồm các đơn chuỗi bát diện Mn(O,OH)
6
, trong đó có 4 liên
kết ngắn giống nhau Mn – O và 2 liên kết dài Mn – OH. Manganite là dạng cấu trúc
bền của MnOOH, nó được tìm thấy trong tự nhiên và đồng thời cũng rất dễ tổng
hợp trong phòng thí nghiệm. Nó là sản phẩm khử điện hóa của β-MnO
2
.
 Groutite (α – MnOOH)
Groutite có cấu trúc tương tự ramsdellite. Sự sắp xếp của (MnO,OH) trong α
– MnOOH rất giống với ramsdellite. α – MnOOH là dạng cấu trúc ramsdellite khi
có thêm một proton. Cấu trúc của nó bao gồm các đôi chuỗi bát diện (MnO,OH),
các proton chiếm các vị trí trong tinh thể để xây dựng nên một mạng lưới giới hạn
phía trong đường hầm [2 x 1]. Trạng thái của MnOOH có thể so sánh với hợp chất
Li
x
MnO
2
, ion Li
+
chiếm vị trí trong đường hầm của mạng ramsdellite cơ sở. Trong

4
và γ – Mn
2
O
3
đều có cấu trúc kiểu spinel tứ diện lệch. Hausmannite
(Mn
3
O
4
)

là một oxit hỗn hợp có cấu trúc (Mn
2+
)(Mn
3+
)
2
O
4
. Trong spinel tứ diện này,
cation có hóa trị hai Mn
2+
chiếm lỗ trống tứ diện, còn ion Mn
3+
chiếm các lỗ trống
bát diện ở giữa các ion O
2-
sắp xếp sít nhau kiểu lập phương. Ion Mn
2+

nhưng với những khuyết tật quan trọng tại vị trí Mn
3+
tứ diện.
Hình 6. Cấu trúc tinh thể của Mn
3
O
4
và γ – Mn
2
O
3
1.2. Các phương pháp tổng hợp oxit mangan
Có nhiều phương pháp được sử dụng để tổng hợp oxit mangan:
 Phương pháp điện phân [3]: Phương pháp này được dùng phổ biến trong tổng
hợp MnO
2
. Các dung dịch điện phân có thể dùng là dung dịch muối MnCl
2
, MnSO
4
,
các điện cực được sử dụng là graphit, chì, titan và hợp kim của nó,…Sản phẩm chủ
yếu của quá trình điện phân là MnO
2
có cấu trúc dạng Akhtenskite với mạng tinh
thể Hexagonal (γ-MnO
2
). Phương trình chung của quá trình điện phân:
(+) Anot: Mn
2+

4
, K
2
Cr
2
O
7
; chất khử có thể dùng là MnSO
4
, MnCl
2
, Na
2
SO
3
, H
2
O
2
,
CuCl, các chất hữu cơ như HCOOH, toluen, CH
3
CH
2
OH…[12], [24], [30], [31].
Ví dụ: S.Devaraj và N.Munichandraiah đã tổng hợp được tinh thể α-MnO
2
có cấu trúc nanô bằng phản ứng giữa KMnO
4
và MnSO

4
+ 2MnO
2
+ Na
2
SO
4
+ K
2
SO
4
+ H
2
O
2KMnO
4
+ 3Na
2
SO
3
+ H
2
O = MnO
2
+ 2KOH + 3Na
2
SO
4
2KMnO
4

0
C trong 18h: [29]
KMnO
4
+ CuCl + 4HCl → MnO
2
+ KCl + CuCl
2
+ Cl
2
+ 2H
2
O
Khi có nhiệt độ và áp suất, hiệu suất của phản ứng sẽ tăng lên, đồng thời sản
phẩm kết tinh tốt hơn. Đây là một phương pháp hiện đại, được dùng rất phổ biến
trong nhiều năm gần đây. Phương pháp này không quá phức tạp, hiệu suất cao, cho
kích thước hạt đồng đều, khả năng hoạt động điện hoá tốt.
1.3. Ứng dụng của oxit mangan
Oxit mangan có nhiều ứng dụng trong thực tế như: làm chất xúc tác trong
tổng hợp hữu cơ, xử lí môi trường (xử lí asen, hấp thụ CO,…), và đặc biệt được sử
dụng làm điện cực trong pin và ăcqui. Một số loại pin sử dụng điện cực MnO
2
như:
pin Zn-MnO
2
, Li-MnO
2
, Mg-MnO
2
.


Nhờ tải bản gốc

Tài liệu, ebook tham khảo khác

Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status