Sáng kiến kinh nghiệm Hướng dẫn học sinh giải một số bài toán hình học không gian bằng phương pháp véc tơ

Link tải luận văn miễn phí cho ae Kết Nối

A. ĐẶT VẤN ĐỀ
I) LỜI MỞ ĐẦU
Một trong các nhiệm vụ cơ bản của chương trình hình học cải cách giáo dục phổ thông là “Bồi dưỡng kỹ năng vận dụng phương pháp véctơ vào việc nghiên cứu một số hình hình học, một số quan hệ hình học ...Việc sử dụng vectơ để giải bài toán hình học”.Chính vì vậy việc giáo viên hướng dẫn học sinh sử dụng phương pháp vectơ để giải bài toán là cần thiết và phù hợp với xu thế cải cách giáo dục hiện nay.
Mặt khác khi đứng trước một bài toán hình học không gian thì học sinh mới chỉ dùng phương pháp hình học tổng hợp (lớp 11) và phương pháp toạ độ (lớp 12) để giải mà chưa nghĩ đến việc dùng phương pháp véctơ để giải chúng.
Vì lí do trên tui chọn đề tài :
“HƯỚNG DẪN HỌC SINH GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG PHƯƠNG PHÁP VÉC TƠ ”.

II) THỰC TRANG CỦA VẤN ĐỀ CẦN NGHIÊN CỨU
1) Thực trạng
Trong chương trình cải cách giáo dục, việc trình bày phương pháp vectơ có liên quan mật thiết đến phương pháp toạ độ. Khái niệm trục toạ độ, hệ trục toạ độ học sinh đã được làm quen trong chương trình toán cấp 2.Trong chương trình hình học THPT, Ban khoa học tự nhiên: ở lớp 10 học sinh làm quen với phương pháp véctơ, sau đó dùng véctơ để xây dựng hệ toạ độ trên mặt phẳng. Sang lớp 11 học sinh được làm quen với véctơ trong không gian, sử dụng vectơ để nghiên cứu quan hệ vuông góc trong không gian. Ở lớp 12 vectơ được sử dụng để nghiên cứu một số quan hệ hình học và xây dựng hệ trục toạ độ trong không gian.Nhưng chưa đi sâu vào việc trình bày lời giải các bài toán hình học không gian bằng phương pháp véc tơ.Một số định lí đóng vai trò “bản lề ”trong việc chuyển từ khái niệm vectơ sang khái niệm toạ độ: Định lí về hai véctơ cùng phương; Định lí về phân tích một vectơ theo hai vectơ không cùng phương trong mặt phẳng; Định lí về phân tích một vectơ theo ba vectơ không đồng phẳng trong không gian.
2) Hiệu quả
Trong quá trình giảng dạy ở lớp 10 tui thấy khi hướng dẫn học sinh sử dụng véc tơ để giải các bài toán hình học phẳng, các bài toán về đại số thì học sinh vận dụng rất tốt và hứng thú. Từ thực trạng trên nên trong quá trình dạy lớp 11,12 tui đã mạnh dạn dần dần hình thành phương pháp bằng cách phát triển từ bài toán cơ bản đến bài toán ở mức độ khó hơn trong quá trình giảng dạy chính khoá cũng như dạy bồi dưỡng, để trang bị đầy đủ kiến thức véc tơ phổ thông , trang bị thêm phương pháp giải toán hình học không gian cho học sinh,
để khi đứng trước bài toán hình học không gian học sinh có thể tự tin lựa chọn một trong ba phương pháp để giải.
tui nhận thấy việc khai thác phương pháp véc tơ để giải các bài hình học không gian để giúp học sinh tìm tòi, phát huy tính sáng tạo, hình thành nhiều cách giải khác nhau khi đứng trước bài toán hình học không gian là điều rất cần thiết và quan trọng.Hơn nữa phương pháp này không đòi hỏi học sinh phải tư duy trực quan cao, mà chỉ cần học sinh nắm vững một số bài toán cơ bản sách giáo khoa và một số kỹ năng biến đổi thuần tuý về mặt đại số thì có thể vận dụng phương pháp để giải các bài hình học không gian một cách đơn giản và nhanh chóng.

B.GIẢI QUYẾT VẤN ĐỀ
I) GIẢI PHÁP THỰC HIỆN
1. Các yêu cầu cơ bản khi giải bài toán hình học không gian bằng phương pháp véc tơ
1.1.Học sinh cần nắm chắc được một số định lí: Định lí về hai véctơ cùng phương; Định lí về phân tích một vectơ theo hai vectơ không cùng phương trong mặt phẳng; Định lí về phân tích một vectơ theo ba vectơ không đồng phẳng trong không gian...
1.2.Học sinh cần có kỹ năng biến đổi các biểu thức véc tơ, phân tích véc tơ theo hệ véc tơ cho trước và ghi nhớ một số bài toán cơ bản...
2.Quy trình chung để giải bài toán hình học không gian bằng phương pháp véctơ
Bước 1.Lựa chọn một số véctơ mà ta gọi là “ hệ véctơ cơ sở’’; “phiên dịch” các giả thiết, kết luận của bài toán hình học không gian đã cho ra “ngôn ngữ” véctơ .
Bước 2. Thực hiện các yêu cầu của bài toán thông qua việc tiến hành các phép biến đổi các hệ thức véctơ theo hệ vectơ cơ sở.
Bước 3. Chuyển các kết luận vectơ sang các tình chất hình học không gian tương ứng.
3.Một số dạng toán sử dụng phương pháp
3.1.Dạng 1. Phần quan hệ song song
Bài toán 1. Hai đường thẳng phân biệt AB và CD song song với nhau khi và chỉ khi .
Bài toán 2. Cho hai không cùng phương thuộc mặt phẳng (P), AB không thuộc (P) . Khi đó :AB//(P) .
Bài toán 3. Cho hai mặt phẳng phân biệt ( ABC) và (MNP).
Khi đó: .
Ví dụ 1
Cho lăng trụ tam giác ABC.A1B1C1. Giả sử M, N, E, F lần lượt là trọng tâm của các tam giác AA1B1, A1B1C1, ABC, BCC1. Chứng minh : MN // EF.
Lời giải:


Xem link download tại Blog Kết nối!
Music ♫

Copyright: Tài liệu đại học ©